На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Обчислення визначника матриц методом Гаусса. Розгорнення характеристичного визначника заданої матриц методом Крилова. Обчислення наближеного значення визначеного нтегралу за допомогою формули Смпсона. Мнмум функцї суть методу золотого перерзу.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 04.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ
Бердичівський політехнічний коледж
Контрольна робота
з дисципліни “Числові методи”

Виконав:
студент групи Пзс-503
Лифар Сергій Олександрович
Перевірив:
Федчук Людмила Олегівна

м. Бердичів 2009 р.

Зміст

Завдання 1.

Завдання 2.

Завдання 3.

Завдання 4.

Список використаної літератури

Завдання 1

Обчислити визначник матриці методом Гаусса.

Розв'язок.

Визначник матриці А шукатимемо за формулою:

де - ведучі елементи схеми єдиного ділення.

Складемо розрахункову таблицю і знайдемо

Стовпчики
1
2
3
9
4
0
4
1
2
2
1
1
1
0,44444
0
-0,77778
2
0,11111
1
1
-2,57143
1,285714

Отримаємо: de t= 9 · (-0,77778) · 1,285714 = -9

Завдання 2

Розгорнути характеристичний визначник заданої матриці методом Крилова.

Розв'язок.

1. Вибираємо початковий вектор наближення .

2. Визначаємо координати векторів

2. Визначаємо координати векторів

3. Складемо матричне рівняння:

4. Запишемо систему виду.

5. Розв'язавши систему методом Гауса, отримаємо

p1
p2
p3
b
У1
У2
1
2
10
-61
-48
0
1
7
-41
-33
0
1
6
-37
-30
1
2
10
-61
-48
-48
1
7
-41
-33
-33
1
6
-37
-30
-30
1
7
-41
-33
-33
-1
4
3
3
1
-4
-3
-3
1
p3
-4
1
p2
-13
1
p1
5

6. Таким чином, характеристичний визначник має вигляд:

Завдання 3

Обчислити наближене значення визначеного інтегралу за допомогою формули Сімпсона, розбивши відрізок інтегрування на 10 частин. Усі обчислення проводити з точністю е=0,001.

Розв'язок.

Наближене значення визначеного інтегралу методом Сімпсона обчислюється за формулою:

Крок табулювання функції знайдемо за формулою:

За умовою a=0 b=1 n=10, отже

Складемо розрахункову таблицю значень функції змінюючи x від a до b на крок табулювання:



i
xi
f(xi)

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.