На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


диссертация Ферментативная система биотрансформации ксенобиотиков. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология. Анализ роли полиморфных вариантов генов ферментов метаболизма ксенобиотиков в детерминации бронхиальной астмы и туберкулеза.

Информация:

Тип работы: диссертация. Предмет: Медицина. Добавлен: 08.04.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


1
3
РОССИЙСКАЯ АКАДЕМИЯ МЕДИЦИНСКИХ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ТОМСКИЙ НАУЧНЫЙ ЦЕНТР ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕДИЦИНСКОЙ ГЕНЕТИКИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ

На правах рукописи

БРАГИНА

ЕЛЕНА ЮРЬЕВНА

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТРУКТУРЫ НАСЛЕДСТВЕННОЙ КОМПОНЕНТЫ ПОДВЕРЖЕННОСТИ К БРОНХИАЛЬНОЙ АСТМЕ И ТУБЕРКУЛЕЗУ ПО ГЕНАМ ФЕРМЕНТОВ МЕТАБОЛИЗМА КСЕНОБИОТИКОВ

03.00.15. - генетика

Диссертация

на соискание ученой степени

кандидата биологических наук

Научный руководитель:

академик РАМН,

профессор В. П. Пузырев

ТОМСК-2005

ОГЛАВЛЕНИЕ

Список сокращений 4

Введение 6

Глава 1. Обзор литературы 12

1.1. Ферментативная система биотрансформации ксенобиотиков 12

1.1.1. Cемейства ферментов I и II фаз метаболизма 12

1.1.2. Свойства ферментов метаболизма ксенобиотиков 14

1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков 17

1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез) 21

1.3. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология 37

Глава 2. Материал и методы исследования 48

2.1. Характеристика обследованных групп населения 48

2.1.1. Характеристика группы больных туберкулезом 48

2.1.2. Характеристика группы больных бронхиальной астмой 50

2.2. Характеристика методов исследования 52

2.2.1. Клинико-лабораторные методы исследования 52

2.2.2. Молекулярно-генетические методы исследования 54

2.2.3. Статистические методы анализа 57

Глава 3. Результаты и обсуждение 60

3.1. Полиморфизм генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2E1, CYP2C19) у жителей г. Томска 60

3.2. Оценка роли полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза 65

3.2.1. Ассоциация полиморфных вариантов генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 с атопической бронхиальной астмой 65

3.2.2. Ассоциация полиморфизма генов ферментов метаболизма ксенобиотиков с туберкулезом 70

3.2.3. Сравнительный анализ роли полиморфных вариантов генов ферментов метаболизма ксенобиотиков в детерминации бронхиальной астмы и туберкулеза 76

3.3. Анализ ассоциаций генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и туберкулезом на семейном материале 78

3.4. Оценка связи комбинаций генотипов генов ферментов биотрансформации ксенобиотиков с туберкулезом и бронхиальной астмой 81

3.5. Связь полиморфизма генов ферментов метаболизма ксенобиотиков с изменчивостью количественных признаков у больных бронхиальной астмой и туберкулезом 85

Заключение 101

Выводы 107

Литература 109

СПИСОК СОКРАЩЕНИЙ

95% CI - 95% доверительный интервал;

CYP - гены цитохрома Р450;

GST - глутатион S-трансфераза;

GSTT1 (и1) - глутатион S-трансфераза тета 1;

GSTT1+ - гомо- и гетерозиготы гена GSTT1;

GSTМ1 (м1) - глутатион S-трансфераза мю 1;

GSTМ1+ - гомо- и гетерозиготы гена GSTМ1;

GSTР1 (р1) - глутатион S-трансфераза пи 1;

HLA - главный комплекс гистосовместимости человека;
Ig - иммуноглобулины;
IL1B - ген интерлейкина 1 В;
IL1RN - ген антагониста рецептора к интерлейкину 1;
INF-г - гамма интерферон;
mEH - микросомальная эпоксигидролаза;
NAT2 - ген N-ацетилтрансферазы;
NRAMP1 (NRAMP1) - ген макрофагального белка (макрофагальный белок), ассоциированного с естественной резистентностью;
OR (Odds ratio) - отношение шансов;
P450 - цитохромы Р450;
S.D. - стандартное отклонение;
S.E. - стандартная ошибка;
TDT (Transmission/Disequilibrium Test) - тест на неравновесие по сцеплению;
TNFА - ген фактора некроза опухолей;
VDR - ген рецептора к витамину D;
АБП - антибактериальные препараты;
АЛТ - аланинаминотрасфераза;
АСТ - аспартатаминотрансфераза;
БА - бронхиальная астма;
БГР (
BHR) - бронхиальная гиперреактивность;
ИЛ - интерлейкин (ы);
МБТ (M. tuberculosis) - микобактерия туберкулеза;
ОМЛ - острая миелоидная лейкемия;
ОФВ1 (FEV1) - объем форсированного выдоха за первую секунду;
ПСВ (PEF)- пиковая скорость выдоха;
РС20 - наличие бронхиальной гиперреактивности, установленное с помощью ингаляционного провокационного теста с метахолином;
РЛ - рак легкого;
РРП - рак ротовой полости;
РХФ - равновесие Харди-Вайнберга;
САП - скарификационные аллергопробы;
ТБ - туберкулез;
ФВД - функции внешнего дыхания;
ФЖЕЛ (
FVC) - форсированная жизненная емкость;
ФМК/ФБК - ферменты метаболизма/биотрансформации ксенобиотиков.
ВВЕДЕНИЕ
Актуальность проблемы.
Генетика широко распространенных болезней человека является активно развивающейся областью исследований. Однако темп накопления сведений о конкретных генах, участвующих в их возникновении и развитии существенно уступает известным на сегодня знаниям по генетике моногенных (менделевских) болезней. Еще более скромные успехи отмечены в изучении генетических основ подверженности к инфекционным заболеваниям. В последнем случае преобладают исследования, касающиеся изучения генетических характеристик возбудителей болезней, их геномов в формировании восприимчивости (устойчивости) человека к конкретной инфекции и клинического полиморфизма болезни. Наряду с этим направлением - изучение генома самого человека, контактирующего с инфекцией, заболевшего или сохранившего здоровье - становится важной областью генетических исследований [Пузырев и др., 2002; Frodshem, Hill, 2004]. Заметим, что отечественным генетиком А.С. Серебровским (1939) было высказано положение, обозначенное им как противоречие «единства бесконечного числа признаков и конечного числа генов», нашедшее, спустя более полувека, развитие в геномных исследованиях человека и обсуждение проектов «Феном человека» [Freimer, Sabatti, 2003] и «Феном мыши» [Paigen, Eppig, 2000]. «Важное различие между геномом и феномом состоит в том, что в то время как геном ограничен (приблизительно 3 млрд. пар оснований у человека), феном - нет (его предел зависит от того, как далеко мы хотим двигаться)» - эта мысль, сформулированная K. Paigen и J.T. Eppig (2000) тождественна положению А.С. Серебровского (1939). Подмеченное сходство взглядов классика генетики XX века и современных исследователей генома человека на гено-фенотипические взаимоотношения [Пузырев, 2001] является, по нашему мнению, обоснованием перспективности высказываемых и ранее гипотез о том, что клинически различные группы (нозологии) заболеваний человека могут контролироваться общим набором генов подверженности [Becker et al., 1998].
С позиции изучения вклада «общих» генов в развитие различных болезней особую актуальность приобретает исследование системы генов метаболизма ксенобиотиков, поскольку ферментами этой системы осуществляется метаболизм не только большинства разнообразных по химической структуре экзогенных молекул, но и многочисленных эндогенных веществ, например, медиаторов воспаления. Система ферментов метаболизма ксенобиотиков представляет собой сформировавшийся в процессе эволюции механизм адаптации организма к воздействию токсичных экзогенных и эндогенных веществ. Предполагается, что различия в скорости деградации различных субстратов ферментами метаболизма могут лежать в основе неодинаковой восприимчивости к ряду заболеваний. Изучению участия генов этой системы в развитии онкопатологии, эндометриоза, бронхиальной астмы, хронической обструктивной болезни легких, инфекционных заболеваний посвящены многие работы отечественных и зарубежных авторов [Lin et al., 1998; Иващенко и др., 2001; Ляхович и др., 2000, 2002; Delfino et al., 2000; Вавилин и др., 2002; Rollinson et al., 2003; Бикмаева и др., 2004]. Очевидно, что генетические различия в регуляции, экспрессии и активности генов ферментов биотрансформации ксенобиотиков являются решающими факторами в развитии болезни и позволяют рассматривать ее как важное звено в этиологии и патогенезе этих заболеваний.
Особое внимание исследователей привлекает участие ферментативной системы метаболизма в биотрансформации лекарственных препаратов [Nebert, 1997]. Изучение полиморфизма генов этой системы в различных популяциях, обусловливающего существование индивидуальных особенностей метаболизма лекарственных препаратов, проявляющихся различиями в эффективности терапии и наличием многообразных побочных эффектов медикаментозной нагрузки, являются достаточно перспективными в практическом применении.
Представляется перспективным проведение сравнительного анализа участия белков ферментов метаболизма ксенобиотиков в возникновении и развитии заболеваний, которые с одной стороны, часто сочетаются друг с другом у одного индивидуума (синтропии), с другой - редко или совсем не встречаются вместе (дистропии).
Туберкулез (ТБ) и бронхиальная астма (БА), являющиеся частой патологией народонаселения, по-видимому, относятся к дистропным заболеваниям. Так, эпидемиологическая парадигма свидетельствует о том, что риск развития атопической БА и ее различных клинических проявлений в течение жизни намного ниже у индивидов, перенесших ТБ в детском возрасте [Von Hertzen et al., 1999, Shirakawa et al., 1997]. Тем не менее, показано, что при БА и ТБ имеет место общая генетическая основа (гены системы HLA, интерлейкинов и их рецепторных антагонистов и др.), обусловленная функциональной значимостью продуктов экспрессии этих генов в инфекционно-аллергическом процессе [Sandford et al., 1996; Greenwod et al., 2000; Bellamy, 2000; Sengler et al., 2002].
Таким образом, изучение роли полиморфных вариантов генов системы метаболизма в развитии БА и ТБ актуально и предполагает исследование их связи с клиническими особенностями течения заболеваний для понимания механизмов взаимодействия в процессе реализации наследственной информации на уровне целостного организма.
Цель работы: Провести сравнительный анализ значения полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза легких, оценить их роль в формировании клинических проявлений данных заболеваний у жителей города Томска.
Задачи исследования:
1. Изучить распространенность частот полиморфных вариантов генов ферментов метаболизма ксенобиотиков (CYP2C19, CYP2E1, GSTT1, GSTM1 и GSTP1) в выборке здоровых индивидов.
2. Оценить связь полиморфизмов исследуемых генов с атопической бронхиальной астмой и туберкулезом легких.
3. Изучить связь полиморфных вариантов, включенных в исследование генов, с клиническими особенностями течения бронхиальной астмы и туберкулеза легких, а также с патогенетически значимыми для этих заболеваний качественными и количественными признаками.
4. Провести сравнительный анализ роли полиморфных вариантов генов системы метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза.
Научная новизна:
Получены новые знания о роли генов ферментов биотрансформации ксенобиотиков (GSTT1, GSTM1, GSTP1, CYP2E1, CYP2C19) в развитии бронхиальной астмы и туберкулеза легких у жителей города Томска. Впервые проведена сравнительная оценка значимости исследуемых полиморфных вариантов генов системы метаболизма в развитии бронхолегочных патологий (на примере бронхиальной астмы и туберкулеза). Выявлены ассоциации полиморфизма генов GSTM1 (делеция) и CYP2E1 (7632T>A) с развитием бронхиальной астмы, а GSTP1 (313A>G) - с туберкулезом. Изучено влияние полиморфных вариантов генов системы метаболизма на развитие различных клинических особенностей течения заболеваний. Впервые проведена сравнительная оценка относительного риска в зависимости от комбинаций генотипов исследуемых генов для развития бронхиальной астмы и туберкулеза. Установлена роль генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2C19, CYP2E1) в детерминации изменчивости количественных, патогенетически значимых для заболеваний признаков. Показана связь полиморфного варианта 313A>G гена GSTP1 с изменчивостью уровня аланинаминотрансферазы у больных туберкулезом легких во время лечения антимикобактериальными препаратами.
Практическая значимость:
Полученные результаты исследования могут быть положены в основу разработки скрининговых программ по выявлению лиц с повышенным риском развития бронхиальной астмы и туберкулеза. Сведения о связи полиморфных вариантов генов ферментов метаболизма ксенобиотиков с изменчивостью показателей печеночной функции могут быть учтены при проведении профилактических мероприятий с целью предотвращения проявлений гепатотоксичности во время противотуберкулезной терапии. Материалы работы могут быть использованы в учебно-методическом процессе на биологических и медицинских факультетах ВУЗов. Полученная информация о полиморфизме генов ферментов биотрансформации ксенобиотиков у русских жителей города Томска может быть использована при проведении генетико-эпидемиологических исследований широко распространенных заболеваний.
Положения, выносимые на защиту:
1. Генетическими маркерами подверженности к бронхиальной астме могут быть генотип Т/А (полиморфизм 7632Т>А) гена CYP2E1 и «нулевой» генотип делеционного полиморфизма гена GSTM1.
2. У жителей города Томска генотип G/G гена GSTP1 (полиморфизм 313A>G) снижает риск развития туберкулеза.
3. Фактором генетической предрасположенности к бронхиальной астме является «нулевой» генотип гена GSTM1 как в сочетании с генотипом GSTT1+, так и в комбинации с гетерозиготным генотипом гена CYP2E1 (полиморфизм 7632Т>А).
4. «Нулевой» генотип гена GSTM1 и генотип *1/*1 гена CYP2C19 оказывают влияние на формирование клинических фенотипов бронхиальной астмы, определяющихся такими показателями как: уровень общего иммуноглобулина Е в сыворотке крови и форсированная жизненная емкость легких.
5. Изменчивость признаков, характеризующих особенности клинического течения туберкулеза (уровень эритроцитов и аланинаминотрансферазы), определяется полиморфными вариантами генов CYP2C19 (681G>A) и GSTP1 (313A>G) системы метаболизма ксенобиотиков.
Апробация работы:
Основные результаты исследования по теме диссертационной работы доложены и обсуждены на межлабораторных научных семинарах ГУ НИИ медицинской генетики ТНЦ СО РАМН (Томск, 2002, 2003); VI, VII научных конференциях «Генетика человека и патология» (Томск, 2002, 2004); IV Международном конгрессе молодых ученых «Науки о человеке» (Томск, 2003); V съезде Российского общества медицинских генетиков (Уфа, 2005).
1
126
55
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1. Ферментативная система биотрансформации ксенобиотиков
1.1.1. Семейства ферментов I и II фазы метаболизма
В процессах метаболизма различных по химическому составу ксенобиотиков, в том числе лекарственных препаратов и ряда эндогенных субстратов, выделяют две фазы [Urs, 1997]. Цитохромы Р450, флавинсодержащие монооксигеназы, эстеразы, амидазы, альдегиддегидрогеназы и др. относят к ферментам I-й фазы биотрансформации, которые участвуют в реакциях окисления и восстановления, а также гидролиза молекул ксенобиотика [Gonzalez, 1993]. Ведущая роль в окислении многих ксенобиотиков, а также важнейших для жизнедеятельности эндогенных соединений, таких как стероидные гормоны, витамины, жирные и желчные кислоты, простагландины, лейкотриены, биогенные амины, ретиноиды и др. принадлежит цитохрому Р450 [Ляхович, Цырлов, 1981; Waxman, Azaroff, 1992]. В ходе ферментативных реакций I-й фазы биотрансформации (фаза активации) образуются водорастворимые соединения. В дальнейшем эти соединения могут подвергаться конъюгации с эндогенными соединениями, восстановлению или гидролизу с помощью ферментов II-й фазы (фаза детоксикации), а затем выведению из организма. Ко второй фазе метаболизма принадлежат ферменты конъюгации - глутатион S-трансферазы (GST), конъюгирующие главным образом электрофильные соединения с глутатионом, УДФ-глюкуронозилтрансферазы (UDPGT), катализирующие реакции конъюгации молекул ксенобиотика или его метаболита с глюкуроновой кислотой [Morgenstern, DePierre, 1985], N-ацетил- (NAT), сульфо- (ST) -трансферазы, эпоксидгидролазы (EH), гидролизующие эпоксиды и др. [Sipes, Gandolfi, 1986].
В реакции II-й фазы метаболизма ксенобиотики могут вступать не только после метаболизма в реакциях I-й фазы, но и напрямую, а впоследствии подвергаться или не подвергаться окислению ферментами цитохрома Р450 [Saito et al., 1986], а результатом метаболизма может быть как уменьшение, так и усиление токсичных свойств субстрата. На рис. 1 представлены возможные комбинации взаимодействия двух фаз биотрансформации.
Рис.1. Изменение токсичных свойств ксенобиотиков в ходе реакциий I-й и II-й фаз биотрансформации.
Наиболее благоприятным исходом из них будет вариант, когда изначально токсичные свойства ксенобиотика снижаются под воздействием ферментов I и II фазы, а высокая активность различных цитохромов Р450 в сочетании с низкой активностью ферментов II-й фазы биотрансформации является наиболее неблагоприятной и приводит к увеличению риска развития некоторых заболеваний [Guengerich, 1988].
1.1.2. Свойства ферментов метаболизма ксенобиотиков
Цитохром Р450 является уникальным по своим свойствам гемопротеидом, обеспечивающим внедрение активированного кислорода непосредственно в молекулу субстрата. В общей сложности известно о 107 генах цитохромов Р450 в геноме человека, из них 59 индивидуальных цитохромов Р450 и 48 псевдогенов [Ingelman-Sundberg, 2004]. На сегодняшний день для большинства цитохромов установлена функциональная значимость. Цитохромы Р450 семейств 1-3 ответственны в большинстве случаев (70-80% из всех ферментов I-й фазы биотрансформации) за метаболизм используемых в клинической практике лекарственных препаратов [Ingelman-Sundberg, 2004; Evans, Relling, 1999; Bertz, Granneman, 1997]. Члены семейства CYP1, 2, 3, 4 - ответственны за метаболизм чужеродных соединений, а CYP11, CYP17, CYP19, CYP21 вовлечены в метаболизм стероидов и желчных кислот [Ioannides, Lewis, 2004; Lewis et al., 2004; Rifkind et al., 1995]. Часть цитохромов Р450 окисляют жирорастворимые витамины, некоторые вовлечены в метаболизм жирных кислот и эйкозаноидов.
Для многих цитохромов Р450 описаны высокоспецифичные субстраты. Однако одной из особенностей как цитохрома Р450, так и его индивидуальных форм является способность к метаболизму большого спектра субстратов. Поэтому изоформы цитохрома Р450 перекрываются в своей субстратной специфичности, и даже высокоспецифичные субстраты могут подвергаться метаболизму многими из них [Райс, Гуляева, 2003]. Интересно, что наряду с селективными субстратами существуют и такие, в метаболизме которых участвуют многие формы цитохрома Р450. Классическим примером такого субстрата является лекарственное средство антипирин, который метаболизируют CYP1A1, 2C8, 2C9, 2C18, 2B6, 3A4, 2D6, 2A6, 2C19 и 2Е1 [Engel et al., 1996].
Глутатион S-трансферазы - мультигенное семейство соответствующих ферментов, которое участвует в метаболизме большого числа электрофильных соединений путем их конъюгации с глутатионом, а также в биотрансформации некоторых эндогенных соединений (гормонов, липидов, простагландинов, лейкотриенов) [Morgenstern, DePierre, 1985; Кулинский, 1999; Hayes, Strange, 1999]. К настоящему времени известно, что у млекопитающих различают 6 подклассов глутатион S-трансфераз: 5 семейств цитоплазматической (альфа (б), мю (м), тэта (и), пи (р) и зета (Z)) и одно семейство микросомальной GST [Eaton, Bammler, 1999] . Синтез глутатионовых S-трансфераз контролируется различными генами, в которых выявлены полиморфизмы, оказывающие существенное влияние на их функции. Известно, что функциональная GST является димером [Beckett, Hayes, 1993].
Цитохром Р450 первоначально был обнаружен в печени, а затем и в других органах. Изучение внепеченочной экспрессии позволило сказать о тканеспецифичности цитохромов Р450. Тканеспецифичная экспрессия различных изоформ цитохрома Р450 определяет особенности протекающих монооксигеназных реакций и отражает адаптацию этой универсальной ферментной системы к структурно-функциональной организации той или иной системы организма. Так, высокая экспрессия цитохрома Р450 в гепатоцитах обеспечивает наиболее активное участие этого органа в биотрансформации ксенобиотиков. В печени ферменты метаболизма ксенобиотиков представлены максимально, а затем по убыванию следуют почки, легкие, кишечник, головной мозг и другие органы. В надпочечниках и половых железах в основном экспрессированы изоформы, участвующие в биосинтезе стероидных гормонов, в почках - изоформы, участвующие в биотрансформации ксенобиотиков и витамина Д и т.д. [Ingelman-Sundberg et al., 1995; Haehner et al., 1996].
На протяжении дыхательного тракта экспрессируются как цитохромы P450, так и ферменты второй фазы биотрансформации. Так в различных сегментах легких обнаружены ферменты семейств CYP1, 2, 3 и 4 [Wheeler, Guenthner, 1991; Raunio et al., 1995]. Из ферментов второй фазы наиболее представлены по всей протяженности респираторного тракта NAT1, NAT2, а также GSTм1, GSTм3 и GSTр1. Необходимо отметить, что глутатионовые S-трансферазы класса составляют более чем 90% от общей GST-активности в эпителиальных клетках легких человека [Frayer et al., 1986] .
Таким образом, знания об экспрессии генов ферментов метаболизма в различных органах и тканях, а также выявление их субстратной специфичности создают возможность объяснения тканеспецифичного метаболизма ксенобиотиков [Ravindranath, 1998]. Однако для этого необходимо изучение специфичного взаимодействия ферментов I-й и II-й фазы в метаболизме различных по химическому составу эндогенных и экзогенных ксенобиотиков, в том числе и лекарственных препаратов, определение их активности и генотипирования полиморфных генов [Pelkonen, Raunio, 1997; Nebert et al., 2003].
Одним из важных свойств системы цитохрома Р450 является индукция - активация транскрипции гена в присутствии субстрата [Ляхович, Цырлов; 1981]. Ранее предполагалось, что ксенобиотики сами являются факторами регуляции собственного метаболизма, однако впоследствии были показаны генетические механизмы процесса индукции [Poland et al., 1973]. Cпособность к индукции характерна для многих генов ферментов метаболизма ксенобиотиков семейств цитохрома Р450 [Honkakoski, Negishi, 2000] и имеет для организма приспособительное значение к меняющимся условиям химического окружения [Denison, Whitlock, 1995], в некоторых случаях достаточно довольно низких концентраций ксенобиотиков-индукторов, чтобы вызвать сильный ответ [Whitlock, Gelboin, 1974; Surry et al., 2000].
Некоторые ксенобиотики оказывают противоположный индукции эффект - ингибируют активность цитохромов Р450, что происходит вследствие образования реактивного метаболита, который ковалентно фиксируется в активном центре фермента. Показано ингибирование активности ферментов некоторыми лекарствами, например, изониазидом [Wen et al., 2002]. В случае, когда несколько ксенобиотиков метаболизируются одним и тем же ферментом семейства цитохрома Р450, они являются конкурентными ингибиторами друг для друга.
1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков
Молекулярные механизмы полиморфизма генов ферментов метаболизма ксенобиотиков обусловлены следующим:
a) Нуклеотидные различия в кодирующем регионе гена приводят к замене аминокислоты и изменению в деятельности фермента или связывания субстрата (например, CYP2D6).
б) Делеции в кодирующем регионе приводят к отсутствию фермента или недостаточному синтезу белка (например, CYP2A6, CYP2D6 и GSTM1).
в) Полиморфизмы в некодирующей области затрагивают элементы транскрипционного контроля, вовлеченные в экспрессию и индукцию фермента (например, CYP1A1).
г) Изменения в сигнале полиаденилирования изменяет количество фермента (например, NAT1).
д) Генная амплификация повышает количество фермента (например, CYP2D6).
е) Сложные взаимодействия полиморфных генов и/или их ферментативных продуктов (например, более высокая активность CYP1A1 и 1A2 у лиц с GSTM1-дефицитом, вероятно из-за большего бионакопления компонентов индукции) [Bartsch et al., 2000].
С феноменом генетического полиморфизма ферментов, участвующих в биотрансформации ксенобиотиков впервые столкнулись фармакологи, и это явление обусловливает значительные межиндивидуальные различия в метаболизме - до 104 [Guengerich, 2003]. По причине существования многочисленных данных с использованием различных обозначений аллелей генов цитохромов Р450 в настоящее время выработана единая классификация, рекомендованная к применению для исследователей [Nelson et al., 1996].
У человека подкласс GSTм кодируется генами, локализованными на хромосоме 1 в области 1р13.3 и включает пять тандемно расположенных генов: GSTM1, GSTM2, GSTM3, GSTM4 и GSTM5 [Афанасьева, Спицин, 1990]. Для гена GSTM1 установлены две мутации: точковая замена, не имеющая функциональных проявлений [De Long et al., 1988], и протяженная делеция гена (10 т.п.н.), которая возникла в результате неравного кроссинговера между двумя гомологичными последовательностями, фланкирующими ген GSTM1, проявляющаяся отсутствием белка [Seidegard, 1988]. GSTM1*A и GSTM1*B кодируют GSTM1A и GSTM1B ферменты, которые функционально идентичны и различаются только по одной аминокислоте. GSTM1A содержит лизин в позиции 172, а GSTM1B - аспарагинин в этом же положении [Hatagima, Strange, 2000].
Ген GSTT1 картирован на хромосоме 22 (локус 22q11.2). Его полиморфизм обусловлен наличием двух аллелей: функционально активного GSTT1*1 и неактивного, так называемого «нулевого» (GSTT1*0). Аллель GSTT1*0 соответствует частичной или полной делеции, приводящей к снижению активности белка [Pemble et al., 1994].
Ген GSTP1 локализован на хромосоме 11 (11q13) и преимущественно экспрессируется в альвеолярных клетках, альвеолярных макрофагах, бронхиолах и плаценте. Для гена GSTP1 описаны две точковые мутации: замена аденина на гуанин в 313 положении первичной последовательности GSTP1, проявляющейся заменой изолейцина 105 на валин (Ile105Val) в 5 экзоне, и замена С341Т, проявляющейся заменой аланина 114 на валин (Ala114Val) в 6 экзоне [Board et al., 1989]. При мутации 105Val в 7 раз увеличивается каталитическая активность фермента по отношению к полициклическим ароматическим соединениям, но в 3 раза снижена активность по отношению к 1-хлор-2,4-динитробензену [Watson et al., 1998].
К настоящему моменту описаны девять аллелей гена CYP2C19, два активных аллеля CYP2C19*1A (wt1) и CYP2C19*1B (wt2) и семь дефектных аллелей CYP2C19*2A (m1A), 2C19*2B (m1B), 2C19*3 (m2), 2C19*4 (m3), 2C19*5A (m4 или TRP433), 2C19*5B, и 2C19*6 (m5) [Romkes et al., 1991; Richardson et al., 1995; Ibenau et al., 1998]. Основной генетический дефект, найденный у «медленных» метаболизеров (S)-мефенитоина - точечная замена G на A в пятом экзоне в положении 681 гена CYP2C19 (CYP2C19*2), приводящая к аберрантному сайту сплайсинга. Образующаяся мРНК не содержит первые 40 оснований пятого экзона, что нарушает рамку считывания, и приводит к образованию стоп-кодона. В печени индивидуумов, гомозиготных по этому дефекту, обнаруживается лишь аберрантно сплайсированная РНК. Таким образом, сплайсинг проходит исключительно с использованием сайта, возникшего в результате мутации [Крынецкий, 1996]. Этот полиморфизм является важным в отношении метаболизма лекарственных препаратов, связанный с нарушением способности цитохрома Р450 метаболизировать антиэпилептический препарат (S)-мефенитоин, а также омепразол, прогуанил, некоторые барбитураты и др. Кроме того показана еще одна точечная замена G>A в положении 636 в четвертом экзоне гена CYP2C19 (CYP2C19*3), приводящая к продукции укороченного белка [Ibenau et al., 1999; Xie et al., 1999; Yang et al., 2004; Schwab et al., 2004].
Ген CYP2E1 локализован на хромосоме 10q24.3-qter и состоит из 11413 п.н. и содержит 9 экзонов, кодирующих продукт из 493 аминокислот [Kolble, 1993]. Для гена CYP2E1 (табл. 1) наиболее часто рассматриваются тесно сцепленные полиморфизмы по рестрикционным эндонуклеазам PstI/RsaI (мутантный аллель CYP2E1*5B), локализованные в 5'-фланкируещем регионе гена [Hayashi et al., 1991; Watanabe et al., 1994;], при которых мутантный аллель способствует повышенной транскрипционной и ферментативной активности, а также DraI полиморфизм (мутантный аллель CYP2E1*6), расположенный в 6 интроне [Uematsu et al., 1991], для редкого аллеля которого показаны мутации, влияющие на экспрессию гена и каталитическую активность соответствующего белка [Hu et al., 1997].
Таблица 1
Номенклатура аллелей CYP2E1 гена (составлена по данным сайта imm.ki.se/CYPalleles)
Аллель
Белок
Однонуклеотидные замены
Эндонуклеаза
рестрикции
CYP2E1*1A
CYP2E1*1B
CYP2E1*1C
CYP2E1*1D
CYP2E1*2
CYP2E1*3
CYP2E1*4
CYP2E1*5A
CYP2E1*5B
CYP2E1*6
CYP2E1*7A
CYP2E1*7B
CYP2E1*7C
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.2
CYP2E1.3
CYP2E1.4
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.1
-
9893C>G
6 тандемов
8 тандемов
1132G>A
10023G >A
4768G>A
-1293G>C
-1053C>T
7632T>A
-1293G>C
-1053C>T
7632T>A
-333T>A
-71G>T;-333T>A
-333T>A;-352A>G
TaqI
DraI, XbaI
PstI
RsaI
DraI
PstI
RsaI
DraI
Таким образом, качественный состав и количественные соотношения изоформ ферментов метаболизма ксенобиотиков могут меняться под воздействием непосредственно самих же ксенобиотиков на организм. В зависимости от структуры исходного субстрата может происходить либо его биоактивация и увеличение токсичности, либо обезвреживание ксенобиотика. В результате ингибирования, индукции и генетического полиморфизма ферментов метаболизма ксенобиотиков может возникать дефицит или очень высокая активность отдельных изоформ и, как следствие, иметь место нежелательные для организма последствия: дисбаланс процессов биотрансформации ксенобиотиков, приводящий к развитию патологического состояния организма, а также снижение терапевтической активности лекарственных препаратов и всевозможные проявления побочных эффектов от их терапевтического действия.
1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез)

Развитие подавляющего большинства мультифакториальных заболеваний (МФЗ) происходит при сочетанном влиянии разнообразных факторов. МФЗ представляют группу болезней, развитие которых определяется неблагоприятным сочетанием полиморфных вариантов генов, контролирующих возникновение и патогенез заболевания в совокупности с определенными воздействиями факторов среды. Для МФЗ характерен ряд особенностей, которые с одной стороны, позволяют рассматривать эту группу патологий как модель изучения комплекса специфичных генов и экзогенных факторов, которые, взаимодействуя между собой, формируют норму реакции устойчивости человека к среде обитания [Гинтер, 2001; Бочков и др., 1984], а с другой - значительно осложняют обобщение данных для установления истинных генов подверженности сложнонаследуемых заболеваний. Например, существенное увеличение распространенности многих полигенных заболеваний (астма и связанные с атопией патологические состояния, туберкулез и др.) нельзя объяснить изменениями в генетической структуре за прошедшие десятилетия. Вероятно, что существующие генетические факторы, взаимодействующие с изменившимися условиями окружающей среды (снижение числа инфекционных болезней, повсеместная иммунизация, особенности питания и др.) вызывают повышенную восприимчивость популяции к вышеперечисленным заболеваниям [Organov, Maslennikova, 1999; Sengler et al., 2002]. Это пример того, как воздействие факторов внешней среды может значительно изменить положение порога подверженности к МФЗ [Фогель, Мотульски, 1990]. Кроме того, необходимо учитывать наличие сочетаний индивидуальных для каждой отдельно взятой популяции аллельных вариантов генов предрасположенности к заболеванию, что отражают различающиеся результаты анализа ассоциаций с МФЗ. Тем не менее, установление генов предрасположенности и изучение их совместной работы, выявление особенностей взаимодействия с факторами негенетической природы в развитии МФЗ, для которых пожизненный риск оценивается в западных популяциях порядка 60%, вызывает естественное стремление исследователей к пониманию механизмов нормальной и патологической реализации генетической информации [Пузырев, 2003].
Бронхиальная астма (БА) - широко распространенное хроническое заболевание дыхательных путей, поражающее в России от 3 до 12 %, а в некоторых промышленно-развитых регионах эти цифры достигают 30 % [Научно-практическая программа «Бронхиальная астма у детей: диагностика, лечение и профилактика», 2004], а также порядка 5 миллионов детей и 10 миллионов взрослых в Западных странах [Schwartz et al., 2004]. Кроме того, отмечено повышение уровня числа больных, требующих госпитализации, а также рост показателей смертности от астмы. Несмотря на явные успехи в области выявления и лечения данной патологии, распространенность и тяжесть заболевания значительно увеличиваются за последние десятилетия.
Драматическое увеличение распространенности и тяжести астмы на протяжении последних 20 лет, особенно в ряде промышленных регионов предполагает, что ухудшающиеся условия окружающей среды играют далеко не последнюю роль в развитии и прогрессировании данной патологии. Отмеченное влияние ряда факторов, например, возраст, раса, социально-экономический статус, хотя и предполагает их участие в риске развития БА, но все-таки особую роль в этиологии и патогенезе заболевания отводят влиянию аллергенов, курению, профессиональным химическим агентам, загрязнителям воздуха, вирусам и иммунизации против конкретного инфекционного заболевания.
В 90% случаев выявления больных бронхиальной астмой присутствует атопия как генетически детерминированная способность организма к выработке повышенного IgE в ответ на воздействие аллергенов окружающей среды. Через IgE-опосредованный механизм целый ряд клеточных элементов: гистиоциты (тучные клетки), макрофаги, лимфоциты, эпителиальные и эндотелиальные клетки независимо друг от друга или совместно принимают участие в воспалении дыхательных путей, тем самым, осуществляя иммунный ответ организма на внедрение антигена. Воспалительная природа заболевания проявляется в морфологи-ческих изменениях стенки бронхов - дисфункции ресничек мерцатель-ного эпителия, деструкции эпителиальных клеток, инфильтрации клеточными элементами, дезорганизации основного вещества, гиперпла-зии и гипертрофии слизистых и бокаловидных клеток. Длительное течение воспалительного процесса приводит к необратимым морфофункциональным изменениям в виде резкого утолщения базальной мембраны, нарушения микроциркуляции и склероза стенки бронха. Ключевой особенностью астмы является состояние бронхиальной гиперреактивности, свидетельствующее о повышенном бронхоконстрикторном ответе на различные физико-химические факторы, включая не только аллергены, к которым сенсибилизирован индивид, но и специфические стимулы, например, холодный воздух и физическая нагрузка [Гриппи, 1997]. Формирование гиперреактивности связывают с перестройкой дыхательных путей, обусловленной хроническим аллергическим воспалением, сопровождающейся сужением стенок, повышением васкуляризации, гипертрофией и гиперплазией гладкой мускулатуры бронхов. В результате чего происходят изменения нейрональной регуляции и повышение сократимости гладких мышц дыхательных путей. Как и атопия, неспецифическая гиперреактивность являются одними из универсальных признаков астмы: чем выше эти показатели, тем тяжелее протекает процесс. Однако распространенность бронхиальной гиперреактивности значительно выше, чем БА.
На протяжении более чем столетней истории вопроса наследования БА обсуждались различные модели - моногенные (аутосомно-рецессивная и доминантная), полигенные, сцепленные с половыми хромосомами [Huang, Marsh, 1993; Чучалин, 1999]. В ходе исследований стало понятно, что сложные механизмы наследования астмы (как и атопии) не могут быть объяснены простой (моногенной) моделью, а проявление клинических симптомов болезни является результатом действия средовых факторов на предрасположенных индивидуумов [Anderson, Cookson, 1999].
Для оценки генетического вклада в этиологию и патогенез БА были предприняты массовые близнецовые исследования в Швеции, Финляндии, Норвегии, Дании, США и Австралии, показавшие оценку наследуемости от 15 до 75 %, что подтвердило предположение о генетической основе заболевания [Edfors-Lubs, 1971; Duffy et al., 1990; Nieminen et al., 1991; Lichtenstein, Svatengren, 1997; Laitinen et al., 1998; Skadhauge et al., 1999].
Большинство современных исследователей рассматривают генетическую компоненту заболевания БА как полигенную систему с аддитивным эффектом отдельных генов, каждый из которых в отдельности не способен, либо крайне редко способен вызвать болезнь [Holgate et al., 1995; LeSouef, 1997]. Таким образом, БА, как и многие распространенные заболевания в популяции, рассматривается как полигенная болезнь с наследственной предрасположенностью или как мультифакториальная болезнь. Для астмы, как и для остальных заболеваний этой группы характерны следующие признаки, сформулированные в 1969 году C.O. Carter: а) относительно высокая частота болезни в популяции и в то же время значительная семейная подверженность; б) наличие патогенетических и ассоциированных маркеров предрасположения; в) хроническое течение и наличие форм, образующих непрерывный ряд проявлений от ярко выраженных до субклинических; г) более раннее начало заболевания и утяжеление клинических симптомов в нисходящих поколениях семьи; д) относительно невысокая (в сравнении с моногенными болезнями) конкордантность по заболеванию у монозиготных близнецов; е) повышенный риск повторного рождения предрасположенных к болезни детей с появлением каждого последующего пораженного болезнью ребенка; ж) однотипность проявлений болезни у больного ребенка и ближайших родственников, что отражает коэффициент наследуемости, превышающий 50-60%; з) несоответствие закономерностей наследования болезни простым менделевским моделям (доминантное, рецессивное и др.) [Carter, 1996].
Таким образом, достижения в области исследования важнейших механизмов развития астмы позволили выработать концепцию патогенеза БА, согласно которой в основе клинических проявлений болезни лежит атопия, которая, как известно, характеризуется значительным вкладом наследственных факторов. А тщательная оценка эпидемиологии астмы позволяет определить экологические факторы риска БА.
Существует мнение, что контакт с бактериальными и вирусными инфекциями в раннем детстве является защитным фактором к дальнейшему развитию атопического заболевания в более поздней жизни. Еще в 1989 г. Strachan заметил, что распространение сенной лихорадки среди взрослых находится в обратной связи с размером семьи и даже более того - с наличием братьев и сестер [Strachan, 1989]. В связи с чем была выдвинута гипотеза, предполагающая, что инфекции в раннем детстве оказывают защитный эффект против развития в дальнейшем аллергии, получившая в последующем название «гигиенической гипотезы». С момента этого наблюдения выполнено много исследований, посвященных изучению связи между инфекциями, перенесенными в раннем периоде жизни и последующим развитием атопических заболеваний [Noguchi et al., 1998; Heinzmann et al., 2000]. Воссоединение Германии в 1990 г. способствовало уникальной возможности изучать распространение астмы в генетически схожих популяциях, но в условиях воздействия различных факторов окружающей среды, в том числе инфекции. Несмотря на то, что дети из бывшей Восточной Германии чаще болели инфекциями верхних дыхательных путей по сравнению с Западной Германией, развитие астмы в этих двух популяциях имело обратную зависимость [von Mutius et al., 1994]. В контексте «гигиенической гипотезы» интересны исследования, в которых показано, что дети, выросшие на ферме в тесном контакте с сельскохозяйственными и домашними животными, реже имели сенсибилизацию к пыльцевым и другим атопическим аллергенам в сравнении с детьми, выросшими в другой среде. Эти результаты указывают на то, что окружающая среда, характеризующаяся высоким содержанием бактерий, может действительно защищать от развития аллергии, по крайней мере, если субъект в раннем возрасте находился в такой среде. Основным механизмом данного защитного действия является способность эндотоксинов, содержащихся в бактериально загрязненной домашней пыли, стимулировать Th1-иммунитет [Ильина, 2001].
На сегодняшний день показано сцепление БА и ее клинических проявлений со многими хромосомными регионами. Изучение кандидатных генов показало сцепление с атопией и бронхиальной гиперреактивностью по многим локусам, но наибольшая важность показана для регионов 5q, 6p, 11q, 12q, 13q, 14q, 16p, и именно для этих локусов получены воспроизводимые результаты (табл. 2).
Таблица 2
Гены-кандидаты бронхиальной астмы и связанных с ней клинических фенотипов
Локализация
Молекула
SNP/мутация
Связанный
фенотип
Литературный
источник
1
2
3
4
5
1р32
Гистамин-N-метил-трансфераза
С314Т(Thr105Ile)
Астма
Yan et al., 2000
1p13.3
GSTM1
del
Астма
Атопия
Ляхович и др., 2000; Вавилин и др., 2002; Zhang et al., 2004
2q14
IL1A
G/T at +4845
Астма
Adjers et al., 2004
3p21
СCR5
CC5-?32
Астма
Hall et al., 1999
5q22-q24
СYP1A1
Аллель Val
Астма
Вавилин и др., 2002
5q31-34
IL-4
C-590T
Астма/
Общий IgE/
Специфический IgE/
Атопический дерматит
Rosenwasser et al., 1995; Walley et al., 1996; Noguchi et al., 1998; Kawashima et al., 1998; Burchard et al., 1999
С+33Т
Астма/ Общий IgE
Dizier et al., 1999; Nagarkatti et al., 2004
5q31
IL-13
C-1055T; (C-1112T); A-1512C
C1923T; G2525A; C2580A; C2749T; G427557A; +79Т>С; Arg110Gln
Атопическая астма/ Общий IgE
Van der Pouw Kraan et al., 1999; Graveset al., 2000; Liu et al., 2000; Heinzmann et al., 2000; Eder et al., 2004
В2-AR
G-1023A; C-709A; G-654A; C-468G; C-406T; T-367C; T-47C; T-20C; G46A; C79G
G252A; C491T; C523A; G-654A; G46A; Gly16Arg
Лекарственный ответ (изучение гаплотипа)
FEV1
Астма
FEV1
Гормоно-зависимая астма
Reihsaus et al., 1993; Drysdale et al., 2000; Summerhill et al., 2000
5q31.1
CSF2
117Thr
Астма
Hoffjan et al., 2004
5q31.1
СD14
-159C>T
Общий IgE
Baldini et al., 1999; Gao et al., 1999
5q35
LTC4 synthase
-444C
Аспирин-зависимая астма
Senak et al., 2000
5q31
SPINK5
G1258A
Астма
Kabesch et al., 2004
6p
Il17F
Астма
Ramsey et al., 2005
6p21
HLA-II
Специфический IgE
Moffatt, 1996
6p21.3
TNF
G-308A
Астма
Sandford et al., 2004
LT-б
Астма
Moffatt, Cookson, 1997
6р21-12
PAF-acetyl-hydrolase
Ile198Thr
Ala379Val
Атопическая астма/Общий IgE/
Специфический IgE
Kruse et al., 2000
6p21
HLA-G
Астма/ Бронхиальная гиперреактивность
Nicolae et al., 2005

Гаплотип-блок GPR154 (GPRA)
Астма
Melen et al., 2005
8p23.1-p21.3
NAT2
590G>A
Астма
Ляхович и др., 2000
9q33.1
TLR4
Asp299Gly
Астма
Fageras Bottcher et al., 2004
10p15
GATA3
Фенотипы
астмы
Pykalainen et al., 2005
11q12-13
CC16
A38G
Астма
Laing et al., 1998
11q12.1
FcеR1-в
237Gly
Ile181Leu
Leu181/Leu183
E237G
Астма/ Атопия/ Бронхиальная гиперреактивность
Shirakawa et al., 1994, 1996; Hill et al., 1995, 1996; Hoffjan et al., 2004
11q13
GSTP1
Ile105Val
Атопическая астма/ IgE/ Кожные аллергопробы/FEV1/
Атопический дерматит
Fryer et al., 2000; Cафронова и др. 2003; Tamer et al., 2004
12q13
STAT6
G2964A
Астма
Gao et al., 2000
12p13.31
C3
C3AR1
4896C/T
1526G/A
Астма/
Общий IgE
Hasegawa et al., 2004
12q24.2-q24.31
NOS1
5266 C/T
Общий IgE
Holla et al., 2004
13q14.2
CYSLTR2
601A>G;
-1220A > C
Астма
Pillai et al., 2004; Fukai et al., 2004
13q14
PHF11
Атопический дерматит
Jang et al., 2005
14p11
TCR
VA8.1(*)2
Специфический IgE
Moffatt et al., 1997
14q32
TLR2
TLR2/-16934
Атопия
Eder et al., 2004
Mast cell chymase
MCC BstXI
Экзема/
Общий IgE/
Атопический дерматит
Mao et al., 1996, Tanaka et al., 1999
16p12.1
IL4R
Гаплотип C-3223T, Q551R, I50V
Атопическая астма
Hytonen et al., 2004
16р12-р11
IL-4Rб
Q576R; S503P; Ile50Val;
Ser727Ala; Glu375Ala;Cys406Arg;Ser411Leu;Ser478Pro;Ser761Pro;Gln551Arg;T/C (+22446)
Атопия/IgE/
Атопический дерматит/Атопическая астма
(исследование гаплотипа)
Hershey et al., 1997; Mitsuyasu et al., 1998; Kruse et al., 1999; Ober et al., 2000; Adjers et al., 2004
17q11-q12
RANTES
G403A
Астма/ атопия/ атопический дерматит
Nickel et al., 2000, Fryer et al., 2000
17q11.2
NOS2A
D346D
Астма
Hoffjan et al., 2004
19q13.1
TGFB1
-509T allele
Астма
Hoffjan et al., 2004
22q11.2
GSTT1
del
Астма/
Атопия
Fryer et al., 2000, Вавилин и др., 2002, Иващенко и др., Ляхович и др., 2000
Xq
IL-13Rб1
A1398G
Общий IgE
Heinzmann et al., 2000
DAP3
Астма/
Общий IgE
Hirota et al., 2004
LTC(4)
A(-444)C
Астма
Kedda et al., 2004
В отношении астмы проведено 13 полногеномных исследований (в том числе исследование в различных расовых группах), в результате чего было подтверждено сцепление БА с регионами 5q23-31, 6p21-23, 12q14-24, 13q21-qter и 14q11-13, а также определена важность новых регионов астмы 2q33, 5p15, 11p15, 17p11, 19q13, 21q21 [Daniels et al., 1996; The Collaborative Stady on the Genetics of Asthma, 1997, 2004; Ober et al., 1998; Hizawa et al., 1998; Wjst et al., 1999; Yokouchi et al., 2000; Cookson et al., 2001; Koppelman et al., 2002]. Полученные данные еще раз свидетельствуют в пользу того, что в этиологии и патогенезе БА задействовано исключительное множество генов, каждый из которых в отдельности может вносить лишь относительно небольшой вклад в общую генетическую подверженность к заболеванию.
Изучение этиологии и патогенеза БА показало важную роль в формировании этого заболевания интерлейкинов (ИЛ), ответственных за индукцию и поддержание воспаления при данной патологии [Chung, Barnes, 1999]. Интересным фактом оказалось то, что гены цитокинов, играющих существенную роль в патогенезе БА расположены тандемно в одном кластере на хромосоме 5q31-33 [Arai et al., 1990]. На сегодняшний день показана связь БА и ее клинических проявлений со многими генами ИЛ и их рецепторов [Nanavaty et al., 2001] Так, сотрудниками лаборатории популяционной генетики НИИ медицинской генетики (г.Томск) совместно с кафедрой факультетской педиатрии с курсом детских болезней (заведующий - д.м.н., профессор Огородова Л.М.) лечебного факультета Сибирского государственного университета в рамках работы по изучению генетической компоненты подверженности к БА была показана ассоциация аллеля С-703 гена IL5 с этим заболеванием, характеризующимся бронхиальной гиперреактивностью [Фрейдин и др., 2000]. Кроме того, установлено, что генотип G/G 3'-UTR гена IL4 является фактором риска тяжелого течения заболевания, а гетерозиготный генотип G/С 3'-UTR этого же гена - протективным фактором, ассоциированным с легкой астмой [Огородова и др., 2002; Freidin et al., 2003]. Анализ вклада генотипической изменчивости по генам ИЛ и их рецепторов в фенотипическое варьирование количественных, патогенетически значимых для БА признаков показал, что гены ИЛ и их рецепторов по отдельности определяют 2-5% общей фенотипической дисперсии количественных показателей (1,63-5,54% у мужчин и 1,03-2,15% у женщин) [Фрейдин и др., 2003].
К настоящему моменту накапливаются результаты работ, посвященных анализу связи полиморфизма генов системы ферментов метаболизма ксенобиотиков с атопическими заболеваниями (табл. 3). Многолетние исследования, проводимые в НИИ молекулярной биологии и биофизики СО РАМН (г. Новосибирск) и в НИИ акушерства и гинекологии им. Д.О. Отта (г. Санкт-Петербург) показали связь полиморфизма генов системы ферментов метаболизма с формированием предрасположенности к БА и особенностей ее клинического фенотипа.
Малочисленность имеющихся данных о значимости генов системы метаболизма ксенобиотиков для БА, а также их противоречивый характер, свидетельствуют о чрезвычайной актуальности таких исследований, так как относительно генов метаболизма в ряде случаев, возможно точно установить факторы, обусловливающие их патологический эффект [Ляхович и др., 2000; Schwartz et al., 2004].
Таблица 3
Связь полиморфных вариантов генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и ее клиническими проявлениями
Ген (полиморфизм)
Ассоциация
Литературный источник
GSTT1 (+/del)
БА/ пищевая аллергия
Ляхович и др., 2000; Иващенко и др., 2001; Вавилин и др., 2002; Gilliand et al., 2002; Brasch-Andersen et al., 2004
GSTM1(+/del)
CYP1A1(Ile462Val)
БА/ пищевая аллергия/
эозинофилия
Ляхович и др., 2000; Вавилин и др., 2002
NAT2(S1, S2)
БА/ пищевая аллергия/ эозинофилия
Luszawaka-Kutrzela, 1999;
Gawronska-Szklarz et al., 2001; Вавилин и др., 2002
GSTP1(313A>G)
БА/ положительные прик-тесты/ уровень IgE/ атопический дерматит/ гиперреактивность бронхов
Fryer et al., 2000; Сафронова и др., 2003; Tamer et al, 2004; Сarroll, 2005
CYP2E1
(-2964G/A)
Эффективность
лечения БА
Obase et al., 2003
Обобщая вышеизложенное необходимо отметить, что полученные данные позволили значительно продвинуться в определении генов, полиморфизм которых, возможно играет существенную роль в развитии заболевания. Однако вследствие сложного клинического фенотипа БА, полигенной модели наследования и значительной роли воздействий внешней среды в развитии и прогрессировании этого заболевания, большее число генов подверженности к астме до сих пор остается до конца не идентифицированным и требует дальнейшего исследования.
Туберкулез (ТБ) - одно из самых распространенных инфекционных заболеваний, характеризующееся преимущественно хроническим течением различных клинических форм, своеобразием специфических иммунологических и морфологических проявлений. Проникновение в организм возбудителя ТБ является необходимым, но недостаточным условием для развития болезни, и в патогенезе ТБ взаимосвязаны взаимодействие инфекционного агента, факторы среды и особенности организма хозяина (пол, возраст, сопутствующие заболевания, общая реактивность организма и т.д.). ТБ отличается клиническим полиморфизмом, который определяет различные формы заболевания - от малых с бессимптомным течением до обширных деструктивных процессов в легких с выраженной клинической картиной, а также наличием туберкулезного процесса различной локализации в других органах [Хоменко, 1990]. По-видимому, причины таких различий обусловлены не только неблагоприятным сочетанием внешних факторов, но и особенностями организма, обусловленными его генотипом. Так, отмечено, что некоторые индивиды проявляют врожденную относительную резистентность к ТБ [Авербах, 1976]. Благодаря этому заболевает лишь малая часть населения, в то время как, по данным ВОЗ, инфицируется практически каждый третий житель планеты [Шайхаев, 1999]. По результатам популяционных исследований были показаны этнические различия в развитии ТБ [Рудко и др., 2004; Cervino et al., 2000; Bellamy et al., 1998]. Возможно, что этнические различия в предрасположенности к заболеванию обусловлены определенными традициями популяций, экономическими причинами и др. Кроме того, накоплены данные о высокой подверженности к ТБ популяций, происходящих с территорий свободных от этого заболевания: случаи заболевания были особенно высоки в популяциях, ранее не встречавшихся с этим заболеванием [Bellamy et al., 1998; Stead, 1992]. Эти данные подтверждают гипотезу, выдвинутую еще в 1949 г. Haldane о том, что инфекционные заболевания были главной силой естественного отбора, а резистентность к туберкулезной инфекции формировалась в процессе симбиотных отношений макро- и микроорганизмов [Земскова, 1984].
На сегодняшний день показана роль в подверженности к ТБ для многих генов, в том числе HLA-cистемы, NRAMP1, IFN-г и его рецептора и др. Одним из главных генов-кандидатов туберкулеза является NRAMP1 (от англ. Natural-Resistance-Associated Macrophage Protein 1 gene - ген макрофагального белка, ассоциированного с естественной резистентностью 1) [Bellamy et al., 1998]. Белковый продукт этого гена Nramp1 участвует в процессах активации макрофагов, являясь ключевым звеном в механизме транспорта нитритов из внутриклеточных компартментов в более кислую среду фаголизосомы, где он способен вступать в химическую реакцию с образованием NO. Белок входит в семейство функционально связанных мембранных белков (к этому семейству относят также Nramp2), ответственных за транспорт двухвалентных катионов, таких как Fe2+, Mn2+, Zn2+, Cu2+ [Canonne-Hergaux et al., 1998]. Поэтому, нарушение работы системы, обеспечивающей транспорт важных веществ через мембрану, приводит к дисбалансу между выведением и поступлением веществ в клетки, что может способствовать изменению внутриклеточной концентрации ионов, вызывающей гибель клеток. Предполагаемый механизм антибактериальной функции Nramp1 лежит в создании неблагоприятной для бактерии окружающей среды внутри фагосомы [Пузырев и др., 2002]. Следовательно, дефекты продукции или функции Nramp1 могут приводить к нарушению его транспортной роли и, как следствие, к повышению чувствительности к внутриклеточным патогенам, таким как микобактерии.
Многочисленные работы на экспериментальных животных показали, что NRAMP1 играет важную роль в чувствительности к микобактериям и некоторым другим возбудителям инфекций у мышей, и вероятно, что его человеческий гомолог связан с подобными инфекциями у людей [North, Medina, 1998]. Для определения функции гена NRAMP1 в развитии ТБ были проведены исследования в различных популяциях: у западных африканцев в Гамбии, местного населения в Корее и Японии [Bellamy et al., 1998; Ryu et al., 2000; Gao et al., 2000]. В результате было обнаружено, что изменчивость данного гена связана с различиями в восприимчивости к ТБ. Связь полиморфных маркеров гена NRAMP1 в дальнейшем была подтверждена на семейном материале у больных ТБ родственных между собой индивидов, проживающих на территории Гвинеи-Конакри [Cervino et al., 2000]. Результаты клинико-генетических исследований и изучение ассоциаций ряда маркеров с заболеванием ТБ сформировали единое мнение, что восприимчивость к данной болезни находится под полигенным контролем, а отдельный вклад гена NRAMP1 - лишь небольшая доля в общей подверженности к инфекционному заболеванию [North, Medina, 1998].
Другой генетической системой, задействованной в возникновении и патогенезе ТБ, считается комплекс HLA (от анг. Human Leukocyte Antigens). Комплекс HLA, как и его аналоги у животных, называют главным комплексом гистосовместимости, поскольку первой из обнаруженных функций этого комплекса был контроль над трансплантационным иммунитетом. Следует отметить, что комплекс генов HLA является чрезвычайно полиморфной системой. Первой работой в области исследования HLA системы при ТБ, где были получены положительные результаты, была работа R. Selby и соавт. (1978). Затем исследования были продолжены на популяционном и семейном материале, в ходе которых были получены противоречивые результаты. Ассоциации, показанные в одних популяциях, не находили своего подтверждения у других. В 1979 г. Al-Arif с соавт. показали значимое повышение встречаемости у больных ТБ легких антигена В15 в популяции американских негров [Al-Arif et al., 1979]. Позднее Jiang с соавт. обнаружили высокую частоту встречаемости антигена HLA-В27 среди заболевших ТБ китайцев [Jiang et al., 1983].
Отечественными исследователями также была проведена большая работа по изучению значимости HLA системы при заболеваемости ТБ в разных этнических группах, проживающих на территории России. В ходе работы была установлена повышенная частота встречаемости антигенов локуса HLA-B12,-С в узбекской и туркменской популяциях. У русских с ТБ легких в локусе HLA-В антигены В5, В14 встречались значимо чаще, но особенно интересным показался тот факт, что во всех трех популяциях показана ассоциация HLA-C локуса с заболеванием [Литвинов и др., 1983, 1986; Хоменко и др., 1985]. Следовательно, во всех изучаемых популяциях установлена взаимосвязь между некоторыми генетическими маркерами системы HLA и восприимчивостью к туберкулезу, причем в разных популяциях - с разными антигенами. В большинстве исследуемых популяций определены ассоциации заболевания ТБ с одним и тем же антигеном локуса DR (DR2), и учитывая, что гены комплекса HLA-DR отвечают за иммунный ответ, предполагается, что данный локус оказывает влияние на восприимчивость к ТБ, регулируя силу иммунного ответа на микобактериальные антигены [Поспелов и др., 1987; Хоменко, 1990]. В целом, гены, составляющие комплекс HLA, являются важными факторами патогенеза данного инфекционного заболевания. Об этом свидетельствует целый ряд многократно подтвержденных фактов: ассоциация определенных генов HLA (преимущественно DR и B-локусов) с заболеванием в большинстве обследованных популяций, сцепление гаплотипов HLA в семьях с пораженными родителями и детьми, ассоциации со специфичными антигенами у больных с хроническим, плохо поддающимся лечению процессом.
К настоящему моменту роль в подверженности к ТБ для генов рецептора к витамину D, г-интерферона и его рецептора, фактора некроза опухолей, интерлейкинов и др. не вызывает сомнения [Bornman et al., 2004]. Интерес к системе генов метаболизма ксенобиотиков в отношении ТБ обусловлен несколькими причинами. Во-первых, данные, что при воспалении и инфекции происходит изменение уровня активности цитохромов Р450, предполагают задействование системы метаболизма в защите организма от последствий развертывания воспалительных реакций при заболевании [Prandota, 2002; Сибиряк, 2003; Бикмаева и др., 2004]. Во-вторых, знания об участии ферментов системы метаболизма в биотрансформации лекарственных препаратов, позволяют найти и избежать причины, определяющие нежелательные проявления терапевтического действия лекарств. В этом контексте определение генетической компоненты подверженности к проявлению многообразных побочных реакций при применении антимикобактериальных препаратов при ТБ имеет очень важное значение для достижения успехов в терапии заболевания [Dickinson et al., 1981; Roy et al., 2001; Huang et al., 2002, 2003].
Сложность патогенеза, а так же различия в клиническом проявлении ТБ предполагают, что число генов-кандидатов заболевания достаточно велико, при этом вклад каждого из них в суммарную подверженность различен [Hill, 1998]. И поэтому изучение полиморфизма известных генов-кандидатов, а также поиск новых генов, белковые продукты которых в той или иной степени вовлечены в патогенетические механизмы заболевания, представляется одной из приоритетных задач.
1.3. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология

Известно, что многие бронхолегочные патологии в различной степени связаны с развитием окислительного стресса. Эпителий легкого, насыщенного кислородом внешней среды, чрезвычайно восприимчив для токсического действия радикалов экзогенного и эндогенного происхождения. Высокая частота заболеваний бронхолегочной системы (астма, эмфизема, пневмония и др.) находится в прямо пропорциональной зависимости от уровня загрязнения окружающей среды сильными окислителями (NO, NO2, CO, O3, альдегиды), пылевыми частицами в совокупности с воздействием экстремальных климатических условий [Гусев, Даниловская, 1987; Mutmansky, 1990; Тиунов и др., 1991]. Состояние окислительного стресса и разрушающее воздействие свободнорадикального окисления имеет значение не только в возникновении заболевания, а также может являться важнейшей причиной дальнейшей хронизации патологического процесса в легочной ткани [Меньщикова, Зенков, 1991].
Известно, что источниками активированных кислородных метаболитов могут быть как внешние факторы (альдегиды, озон, окислы азота, сигаретный дым, анаэробные бактерии), так и эндогенные, задействованные во внутриклеточных метаболических процессах (альвеолярные макрофаги, гранулоциты, внутриклеточные органеллы). Воздействие атмосферных прооксидантных поллютантов, таких как озон, окислы азота, составляющих табачного и автомобильного дыма на дыхательные пути приводит к индуцированию окислительных процессов, как на поверхности бронхоальвеолярного секрета, так и непосредственно в эпителии легкого [Wright et al., 1994]. Присутствие разнонаправленных повреждающих воздействий оксидативного стресса говорит о важности для организма поддержания баланса системы активированных кислородных метаболитов в легких.
Эффективной защитой от различных токсикантов внешней среды, поступающих с вдыхаемым воздухом, служит система биотрансформации ксенобиотиков при согласованном функционировании защитных механизмов. Глутатион S-трансферазы - семейство ферментов, участвующих в метаболизме большого числа электрофильных ксенобиотиков через конъюгацию с глутатионом, а также в метаболизме ряда эндогенных субстратов (гормонов, липидов, простагландинов, лейкотриенов). Таким образом, метаболизм ксенобиотиков через глутатионопосредованную детоксикацию играет важную роль в обеспечении устойчивости клеток к перекисному окислению жиров, свободным радикалам, алкилированию белков, в формировании резистентности к лекарственным препаратам и предотвращении поломок ДНК.
В результате однонуклеотидной замены аденина (А) на гуанин (G) в гене GSTP1, приводящей к замене аминокислот изолейцина (Ile105) на валин (Val105), происходит изменение ферментативной активности, обусловливающее повышение уровня гидрофобных аддуктов в тканях легких и полициклических ароматических углеводородов-ДНК аддуктов в лимфоцитах крови. Было выявлено, что замена изолейцина на валин в 105 положении расположенная в субстрат-связывающем Н участке фермента, приводит к различным изменениям кинетических параметров фермента [Katoh et al., 1999]. Показано, что при мутации Val105 в 7 раз увеличивается каталитическая активность фермента по отношению к полициклическим ароматическим соединениям, но в 3 раза снижается активность по отношению к 1-хлор-2,4-динитробензену [Ishii et al., 1999]. Отмечено, что индивидуумы с аллелем Val105 имеют повышенный риск развития РЛ [Баранов и др., 2000].
К настоящему времени накоплено достаточно сведений об ассоциации «нулевого» генотипа гена GSTM1 с риском развития эмфиземы легких и хроническим бронхитом у курильщиков [Афанасьева, Спицин, 1990], кроме того, показана повышенная частота «нулевого» генотипа, помимо GSTM1, и для гена GSTT1 у больных БА [Баранов и др., 2000]. Микросомальная эпоксигидролаза (EPHX1) осуществляет метаболизм продуктов табачного дыма, и поэтому играет важное значение в защите легких от высокоактивных производных эпоксида, образующихся при курении и приводящих к повреждению легочной ткани курильщиков. Показано, что с аллелем S гена EPHX1, обеспечивающим пониженную активность соответствующего фермента, ассоциированы заболевания органов дыхания, такие как эмфизема легких, хронический обструктивный бронхит, муковисцидоз, хронические респираторные заболевания [Баранов и др., 2000; Lomas, Silverman, 2001; Matsushita et al., 2002; Sandford, Silverman, 2002].
Многочисленные исследования полиморфных вариантов генов системы метаболизма ксенобиотиков показали связь с различными заболеваниями, включая сердечно-сосудистую патологию, атопические заболевания, хронические неспецифические заболевания легких и др. Но, прежде всего, пристальное внимание исследователей к индивидуальным особенностям функционирования системы биотрансформации отмечено при онкологических заболеваниях. Это понятно, так как уже доказано влияние большинства химических агентов, с которыми человеку приходится сталкиваться как в быту, так и на производстве, на процессы канцерогенеза.
Исследование полиморфизма 313 A>G гена GSTP1 у японцев с различными онкологическими патологиями (рак ротовой полости, легких, желудка, колоректальным и урогенитальным видами рака) показало ассоциацию только у некурящих индивидуумов с раком ротовой полости (РРП), для остальных видов рака различий не было выявлено [Katoh et al., 1999]. В другой работе была изучена роль полиморфного варианта C341T гена GSTP1 как важного фактора, обусловливающего развитие РРП, где был показан повышенный риск развития данной патологии, как для европеоидов, так и для афроамериканцев. Интересен тот факт, что более высокий риск развития заболевания наблюдался у пациентов с малым потреблением табака ( или = 20 пачка/год) по сравнению с группой интенсивных курильщиков (20 пачка/год) [Park et al., 2000].
Генетическая предрасположенность - одна из важных гипотез, объясняющих, почему лишь у малого числа курильщиков развивается рак легкого (РЛ). Полиморфизмы, участвующие в метаболизме канцерогенов изучаются как факторы риска для рака легкого. Полиморфизм в гене GSTM1, также как и в гене GSTT1, обусловлен протяженной делецией, в результате которой происходит полное отсутствие ферментативной активности. В ряде работ показано, что функциональную значимость в развитии онкопатологии может иметь не один конкретный рисковый генотип, а их специфическая комбинация. Было отмечено, что повышенный риск РЛ у курильщиков европеоидной расы имеют индивиды с комбинацией генотипов GSTM1-нуль, GSTP1 AG+GG и GSTM3 AA (n=322) [Jourenkowa-Mironowa et al., 1998]. Другое исследование также выявило связь развития РЛ у индивидов с «нулевым» генотипом гена GSTM1 в присутствии р53 Pro аллеля [Miller et al., 2002]. Предположительно, что потенциальное взаимодействие между GSTP1 и GSTM1 генами в японской популяции у мужчин-курильщиков (n=542) в возрасте 50-69 лет приводит к повышенному риску РЛ при комбинации одного из вариантов аллелей GSTP1 и нулевого генотипа гена GSTM1 [Kihara, Noda, 1999]. Выявлен повышенный риск РЛ среди курильщиков в популяционных выборках Средиземноморья, 93% которых составили мужчины с комбинацией «нулевого» генотипа гена GSTM1 и р53 Pro/Pro+Arg/Pro генотипов [To-Figueras et al., 1996].
Предположительное влияние изотиоцианатов - компонентов, обладающих антиканцерогенными свойствами и содержащихся в крестоцветных овощах, в снижении регуляции уровня ферментов биотрансформации семейства цитохромов Р450 и индукции ферментов второй фазы детоксикации, легло в основу исследования GSTM1 и GSTT1 генотипов у больных с впервые выявленным РЛ. В ходе исследования было показано модифицирующее влияние употребления в пищу изотиоцианатов у курильщиков гомозиготных по «нулевым» генотипам GST на развитие рака легкого [Spitx et al., 2000].
Миелодиспластический синдром (МДС) - клональное пролиферативное нарушение костного мозга, часто прогрессирующее в острую миелоидную лейкемию (ОМЛ), а заболеваемость и смертность от МДС одинакова и составляет период менее года. Воздействие различных по качественному и количественному составу химических веществ, с которыми приходится сталкиваться индивидуумам по роду профессиональной деятельности, на процессы канцерогенеза может увеличивать вероятность заболеваемости МДС. Повышенный риск МДС отмечен у лиц, проходивших курс химиотерапии при лечении других опухолей. Вследствие индивидуальных различий в метаболизме ксенобиотиков (в том числе и канцерогенов) возможно увеличение риска раковых заболеваний при сниженной функции метаболизирующих ферментов. Конъюгация электрофильных компонентов с глутатионом, опосредованная глутатион S-трансферазами, является важным этапом метаболизма канцерогенов. Известно, что частота «нулевого» генотипа гена GSTM1 среди европеоидов составляет порядка 50% и данный генотип ассоциирован с развитием РЛ, индуцированного курением, а также раком мочевого пузыря. О взаимосвязи «нулевого» генотипа гена GSTT1 с различными раковыми заболеваниями известно намного меньше, но ясно, что у индивидуумов с «нулевым» генотипом снижена способность к метаболизму некоторых канцерогенов, включая 1,3-бутадиен, метилбромид, оксид этилена. Был установлен четырехкратный относительный риск МДС для носителей «нулевого» генотипа GSTT1 [Chen et al., 1996].
Предполагается, что нулевой генотип гена GSTT1, ассоциированный с канцероген-индуцированными хромосомными изменениями в лимфоцитах, может увеличивать риск подверженности к миелодисплазии. При анализе данных, полученных в ходе исследования пациентов с острой миелоидной лейкемией (ОМЛ), была показана повышенная частота делеции в гене GSTT1 среди больных (60%), что практически в три раза выше, чем в контрольной группе (17%), кроме того, индивиды с делецией по генам GSTT1 и GSTM1 имели несколько больший риск ОМЛ. Интересно, что у лиц со вторичной ОМЛ делеция GSTT1 встречается на 20% чаще по сравнению со случаями de novo, что характерно и для индивидов с «нулевым» генотипом гена GSTM1 [Cramp et al., 2000].
Возможно, что эффекты определенных генотипов генов ферментов биотрансформации различны в развитии рака и других заболеваний. В связи с этим предложено, что продукты, образующиеся в ходе метаболизма ряда ксенобиотиков с участием глутатионовых S-трансфераз, способствуют атерогенезу и нестабильности тромбоцитов. В дальнейшем было показано, что «нулевой» генотип гена GSTM1 играет протективную роль в развитии инфаркта миокарда, причем эффект более выражен у курильщиков [Wilson et al., 2000]. Вероятно, что наличие «нулевого» генотипа по генам GST способствует повышенной регуляции других ферментов, более эффективно участвующих в метаболизме атерогенных субстратов с учетом одного из важных качеств системы биотрансформации, а именно широкой субстратной специфичности. По этому поводу имеются данные о скоординированной экспрессии GSTM1 и GSTM3 в легочной ткани человека [Anttila et al., 1995], а также о более высокой активности CYP1A2 у индивидуумов с нулевым генотипом GSTM1 [MacLeod et al., 1997].
Глутатионопосредованная детоксификация принимает непосредственное участие в защите организма от оксидативного стресса, что оправдывает изучение полиморфизма генов глутатион S-трансфераз в патогенезе различных патологических состояний, в том числе и при эндометриозе. Так, у больных эндометриозом женщин Башкортостана отмечаются различия по частотам как отдельных генотипов полиморфных локусов GSTM1 и GSTP1, так и по распределению частот их сочетаний. Кроме того отмечено, что более выраженный эффект от гормонального лечения наблюдался у лиц, имеющих «нулевой» генотип гена GSTM1 в сочетании с мутацией по гену GSTP1 [Шарафисламова и др., 2003].
N-ацетилтрансфераза-2 (NAT2) и микросомальная эпоксигидролаза (EPHX1) полиморфные гены ферментов, метаболизирующих различные канцерогены табачного дыма. Табачный дым содержит 4000 компонентов, включая около 50 канцерогенов, являющихся субстратами семейства ферментов биотрансформации. Для понимания роли этих двух полиморфизмов во взаимодействии «ген-окружающая среда» в развитии РЛ было проведено исследование, в ходе которого было обнаружено, что риск развития заболевания значительно повышается с увеличением значения «пачка-лет» у курильщиков. Результаты данного исследования еще раз показали очевидность того, что изучение взаимоотношения генетического полиморфизма с факторами окружающей среды в формировании повышенного риска онкологической патологии, имеет состоятельность только тогда, когда внешнесредовой фактор является неотъемлемой составляющей частью патогенетического механизма (например, курение), и он обязательно включается в анализ [Zhou et al., 2002].
Ген CYP17 кодирует фермент цитохром Р450С17, который выполняет две различные функции в биосинтезе стероидов, что обусловливает его изучение как гена кандидата восприимчивости к эндокринзависимым опухолям. Тем не менее, были получены довольно противоречивые результаты при исследовании пациентов с раком яичников и полиморфизма Т-С в промоторном регионе CYP17 гена в различных популяциях [Spurdle et al., 2000]. Что еще раз подтверждает популяционную вариабельность полиморфизма генов биотрансформации, и, следовательно, различный вклад генов системы метаболизма у разных индивидуумов в процессы онкогенеза.
Ген CYP1A1 человека был клонирован и секвенирован в 1986 году и локализован на хромосоме 15. Полиморфизм в 3'-некодирующем регионе гена, обусловленный заменой цитозина на тимидин, узнаваемый MspI эндонуклеазой рестрикции был впервые идентифицирован у японцев. Различные исследования показали ассоциацию данного полиморфизма и риском развития РЛ в европеоидной популяции [Shields et al. 1993; Alexandrie et al., 1994; Sugimura et al., 1994]. Эти результаты сходны с данными, полученными в аналогичной работе по изучению злокачественного новообразования в легких для японской популяции [Xu et al., 1996].
Употребление алкоголя в больших дозах рассматривается как один из факторов, способствующих развитию различных заболеваний печени. Так, отмечен высокий риск развития гепатоцеллюлярной карциномы (ГЦК) у японцев, злоупотребляющих алкоголем. Причем, наблюдалась повышенная частота С2 аллеля гена CYP2E1, связанного с высокой транскрипционной и ферментативной активностью, что также позволяет говорить о повышенном риске к ГЦК у индивидуумов, злоупотребляющих алкоголем [Munaka et al., 2003].
Развитие алкогольного поражения печени (АПП) на фоне алкогольной интоксикации всего организма является следствием несостоятельности ферментативной системы биотрансформации ксенобиотиков, участвующей в метаболизме этанола. Метаболизм этанола происходит в печени, где метаболизируется порядка 98% попавшего в организм алкоголя по НАДФ-зависимому пути с помощью алкогольдегидрогеназы и ацетилдегидрогеназы, локализованных преимущественно в цитоплазме клеток печени. Существует и другой путь окисления этанола с помощью микросомальной этанолокисляющей системы при участии ферментов семейства цитохрома Р450. Шангареева З.А. и др. показали, что для пациентов, страдающих АПП характерно повышение частот мутантных аллелей генов CYP2E1, CYP1A1, mEPHX, GSTT1 и GSTM1, приводящее к увеличению рисковой значимости гетерозиготных генотипов генов CYP2E1 (OR=7,37), CYP1A1 (OR=2,87), mEPHX (OR=2,45) [Шангареева и др., 2003].
Начало или обострение псориаза, обусловленного Т-клеточным механизмом заболевания кожи с аутоиммуным характером заболевания, зачастую вызывается применением -блокаторов и противомалярийных лекарственных препаратов. Предполагается, что метаболическая эффективность, обусловленная различными вариантами аллелей генов системы ферментов биотрансформации, может привести к накоплению ксенобиотиков или их реактивных метаболитов в органах-мишенях, а в дальнейшем неоантигены или неизвестные пептиды могут вызвать агрессивную реакцию со стороны Т-клеток. В этом контексте, было проведено исследование полиморфизма гена CYP2C19 у пациентов с псориазом. В ходе исследования было показано, что для гетерозиготных носителей по гену CYP2C19 (*1А и *2А) характерно более позднее развитие псориаза, в то время как эти же генотипы показали протективную роль для развития артрита, связанного с псориазом [Richter-Hintz et al., 2003].
Цитохромы P450 ответственны приблизительно за 75% метаболизма лекарственных препаратов и различных химических агентов. Человек имеет 59 активных генов, и 6 из них кодируют важные для лекарственного метаболизма ферменты. Приблизительно 40% цитохром P450-зависимого лекарственного метаболизма катализируются полиморфными ферментами, и такие «лекарство>P450» взаимодействия часто рассматриваются в отношении побочных действий лекарственных препаратов [Ingelman-Sundberg, 2004].
Экспрессия цитохрома P450 и связанная с ней биотрансформация изменяется при различных инфекционных заболеваниях. Следовательно, при развитии воспаления и инфекции в организме нарушена способность метаболизма печени и других органов, контролирующих действие лекарств. Содержание цитохрома Р450 и монооксигеназные активности в тканях этих органов снижаются при развитии бактериальных и вирусных инфекций, иммунизации различными антигенами, в условиях фармакологической иммуностимуляции, что опосредовано цитокинами. Депримирующее воздействие на цитохром Р450-зависимые монооксигеназы обнаружено у IFNa, IFNb, IFNg, IL-1 и TNF, IL-6, IL-11, IL-2. Цитокины угнетают транскрипцию генов и накопление мРНК различных изоформ цитохрома Р450 в клетках, возможно и посттранскрипционное угнетение синтеза белка некоторых изоформ [Renton, 2004]. Благодаря цитокиновой модуляции процессов монооксигенирования на цитохроме Р450, реализуется адаптация механизмов биотрансформации низкомолекулярных ксенобиотиков в условиях активации иммунной системы. Это обеспечивает, с одной стороны, защиту от последствий возможной неконтролируемой активации потенциально опасной для организма ферментной системы и снижение риска нарушения оксидантного равновесия, с другой - сохранение оптимального уровня и неогенез необходимых для адекватного "ответа" организма низкомолекулярных липофильных сигнальных молекул. Угнетение фармакометаболизирующей функции печени и изменение фармакодинамики и токсичности лекарственных препаратов необходимо учитывать при проведении терапии препаратами рекомбинантных цитокинов. В этом случае необходимо отметить, что ингибирование метаболизма различными препаратами также как влияние на концентрацию и/или число различных цитокинов в воспаленных тканях, может вызывать положительные эффекты у пациентов с различными заболеваниями, что позволит говорить о новых терапевтических возможностях лекарственных средств [Сибиряк, 2003].
Разнообразие элементов многокомпонентной и многоэтапной системы метаболизма имеет важное значение для фармакогенетики в плане разработки индивидуального подхода к лечению пациента. C помощью предупреждения индивидуального ответа на лекарственный препарат становится возможным повышение эффективности лечения и устранения нежелательных эффектов от медикаментозной терапии [Баранов и др., 2000].
Заключая обзор в целом, необходимо отметить, что изучение естественной изменчивости генов ферментов биотрансформации ксенобиотиков у больных и членов их семей, а также установление их вклада в патогенез распространенных заболеваний, таких как БА и ТБ, стало задачей настоящего исследования. А понимание основных механизмов, участвующих в патогенезе заболеваний, поможет понять не только причины возникновения болезней, но и научиться бороться с ними.
ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ
2.1. Характеристика обследованных групп населения
В рамках проведенного исследования был проанализирован полиморфизм генов биотрансформации ксенобиотиков и уточнена их функциональная значимость в отношении БА и ТБ легких у русских жителей г. Томска.
Выборки были сформированы для данного исследования на основе ДНК-банка лаборатории популяционной генетики НИИ медицинской генетики ТНЦ СО РАМН, созданного сотрудниками этой лаборатории.
Контрольная группа.
В качестве контрольной группы использовалась выборка, принадлежащая в настоящее время банку ДНК лаборатории популяционной генетики НИИ медицинской генетики ТНЦ СО РАМН. Выборку в количестве 140 человек (средний возраст S.D. 64,3±18,0) частично составили индивиды не родственные между собой и не имеющие по результатам клинического обследования бронхолегочной патологии. Среди индивидов контрольной группы было 80 женщин (средний возраст S.D. 65,8±17,8) и 60 мужчин (средний возраст S.D. 63,5±18,1).
2.1.1. Характеристика группы больных туберкулезом
Материал для исследования больных ТБ был собран на базе Областной Томской Клинической туберкулезной больницы, Детского легочно-туберкулезного отделения Железнодорожной больницы, Областной детской туберкулезной больницы, а также Областном противотуберкулезном диспансере, туберкулезного отделения Областной психиатрической больницы. Сбор материала и клиническое обследование больных осуществлялось при участии сотрудников кафедры фтизиатрии Сибирского государственного медицинского университета (заведующий - член-корр. РАМН, профессор Стрелис А.К.). Основным критерием отбора в группу пациентов были два условия - отсутствие родственных связей между индивидами и этническая принадлежность.
Общая выборка больных туберкулезом легких.
Выборку составили 304 индивида, средний возраст S.D. которых был 30,615,4, из них 99 женщин, средний возраст S.D. которых составил 26,314,6 года и 205 мужчин средний возраст S.D. - 32,815,4 лет. Диагноз туберкулеза легких устанавливался на основании данных микроскопии мокроты с обязательным рентгенологическим исследованием легких для определения формы заболевания и распространенности специфического процесса (общепринятые методы). Противотуберкулезную терапию больные получали по 1-ой категории, согласно рекомендациям ВОЗ (табл. 4).
Таблица 4
Режимы лечения больных с распространенным деструктивным туберкулезом легких по протоколам ВОЗ
Масса
тела
до
начала
лечения,
кг
Начальная фаза: 2 месяца
Фаза продолжения

4 месяца

Иониазид+

Рифампицин, таблетка

100мг+150мг

150мг+300мг

Пиразинамид,

таблетка

500 мг

Этамбутол,

таблетка

400мг

Стрептомицин,

порошок для инъекций,

1г основания во флаконе

Иониазид+

Рифампицин, таблетка

100мг+150мг

150мг+300мг

33-50

3 табл.

(100мг+150мг) ежедневно
3 табл.
ежедневно
2 табл.
ежедневно
750 мг
ежедневно
3 таблетки
ежедневно
50 и
более
2 таблетки
(150 мг+ 300мг)
ежедневно
4 табл.
ежедневно
3 табл.
ежедневно
1 г
ежедневно
4 таблетки
ежедневно
Семейная выборка больных туберкулезом легких.
Семейная выборка была зарегистрирована по пробандам - больным туберкулезом, находившихся на лечении в противотуберкулезных учреждениях г. Томска в период с 2000 по 2004 г.. Всего было обследовано 42 семьи (109 человек), в том числе 25, зарегистрированных по пробандам - детям в возрасте от 1 года до 15 лет (средний возраст S.D. составил 7,73,9). Семнадцать семей было выбрано по взрослым пробандам в возрасте от 17 до 48 лет (29,412,3 лет). В составе «пробанд/пробанды-мать-отец» исследовано 19 семей, в неполном составе, когда отсутствовал материал одного из родителей - 16 семей.
Группу пробандов - детей составили 10 мальчиков (7,22,9 лет) и 15 девочек (7,94,5 лет). Средний возраст пробандов - детей разного пола достоверно не различался (р>0,05). Среди взрослых пробандов было 7 женщин (19,87,9 лет) и 10 мужчин (23,99,1 лет). Всем пробандам был поставлен диагноз туберкулеза.
2.1.2. Характеристика группы больных атопической бронхиальной астмой
Исследованная семейная выборка была зарегистрирована по пробандам - больным БА, находившихся под наблюдением в клинико-профилактических учреждениях г. Томска в 1997-2000 г.. Клиническое обследование и диагностику провели сотрудники кафедры факультетской педиатрии с курсом детских болезней (заведующий - д.м.н., профессор Огородова Л.М.) Сибирского государственного медицинского университета, областного детского центра клинической иммунологии и аллергологии (Областная детская больница, г. Томск, главный врач - Сальников В.А.).
Семейная выборка больных БА.
Всего обследовано 76 семей (213 человек), 61 семья из которых была набрана в составе трех человек «пробанд-мать-отец» и 15 семей - в составе двух человек, т.е. «пробанд-мать/или отец». В исследуемой выборке были 72 индивида, зарегистрированные по пробандам-детям в возрасте от 1,7 до 15 лет (средний возраст ±S.D.составил 8,5±3,5). Восемь семей было выбрано по взрослым пробандам в возрасте от 24 до 42,5 лет (34,4±7,2 лет).
Основную часть пробандов-детей составили мальчики (n=47), девочек примерно в два раза меньше (n=25). Средний возраст пробандов-детей разного пола достоверно не различался (8,4±3,5 лет у мальчиков и 8,6±3,5 лет у девочек; р>0,05). Среди взрослых пробандов было семь женщин (34,4±7,2 лет). Всем пробандам был поставлен диагноз «атопическая бронхиальная астма».
Выборка больных БА.
Выборку больных БА составили 134 индивида (21,9±18,8 лет), из них 59 - женщины в возрасте от 2 до 79 лет (24,7±18,5 лет) и 75 - мужчины в возрасте от 1,7 до 68 лет (19,7±18,9 лет). Среди больных БА 78 индивидов - дети в возрасте от 1,7 до 15 лет (8,8±3,7 лет), из которых 28 девочек в возрасте от 2 до 15 лет (8,8±3,9 лет) и 50 мальчиков в возрасте от 1,7 до 14,8 лет (8,63,5 лет). Кроме того, среди индивидов общей выборки больных БА было 56 взрослых (40,315,6 лет), из которых 31 женщина в возрасте от 19 до 79 лет (39,013,9 лет) и 25 мужчин от 19 до 68 лет (41,917,5 лет). Между группами мальчиков и девочек, а также мужчин и женщин не показано различий по возрастному критерию (р>0,05). Всем пациентам был выставлен диагноз «атопическая бронхиальная астма».
2.2. Характеристика методов исследования
2.2.1. Клинико-лабораторные методы
Пробанды, а также их родственники первой степени родства, согласившиеся на проведение исследования, были обследованы для верификации диагноза БА и симптомов атопии. Обследование включало сбор семейного анамнеза и многочисленные клинические тесты: в данной работе были использованы результаты только спирометрических, аллергологических и иммунологических анализов.
Диагноз «бронхиальная астма» верифицировали на основании критериев ВОЗ: наличие характерного для заболевания анамнеза, типичных клинических симптомов астмы, атопии (атопический анамнез, положительные скарификационные аллергопробы (САП), уровень общего сывороточного IgE более 100 МЕ/мл) [Бронхиальная астма. Глобальная стратегия, 1996]. В случае невозможности доказать наличие атопии, выставляли диагноз неатопической БА. Степень тяжести заболевания устанавливали согласно критериям проекта GINA (2002 г.) и Национальной программы лечения и профилактики БА у детей (1997 г.).
Аллергологическое обследование включало сбор аллергоанамнеза и проведение САП на пищевые, ингаляционные, эпидермальные, растительные и грибковые аллергены с использованием стандартных наборов согласно рекомендациям производителей («Биомед», Москва; «Immuno Tek», Испания).
Измерение уровня общих сывороточных антител класса E проводили с помощью твердофазного иммуноферментного анализа с использованием стандартных наборов согласно рекомендациям производителей («Протеиновый контур», Санкт-Петербург; «Veda Lab», Франция). Уровень общего сывороточного IgE пересчитывали на международные единицы на миллилитр (МЕ/мл; 1 МЕ =2,42 нг/мл).
Исследование функции внешнего дыхания (ФВД) осуществляли по стандартной методике (анализ кривой «поток-объем» и показателей спирометрии) на установке «Master Lab Pro» («Эрих Йегер», Германия) [Quanjer et al. 1993].
Для определения степени реактивности бронхов проводили провокационный тест с метахолином. Диапазон концентраций растворов метахолина составили 0,25-32 или 64 мг/мл. Результаты выражали как концентрация метахолина, вызывающая не менее чем 20% падение объема форсированного выдоха (РС20), вычисленная методом линейной интерполяции по общепринятой формуле [Sterk et al., 1993]. Диагностически значимой в отношении БА считали РС20 не менее 20 мг/мл - это состояние рассматривали как наличие бронхиальной гиперреактивности (BHR).
В отношении больных ТБ был проведен полный клинико - эпидемиологический анализ с учетом возраста начала заболевания, социального статуса, вредных привычек (курение, злоупотребление алкоголем, употребление наркотиков), сопутствующей патологией, наличия контакта с туберкулезным больным, а также данные о ТБ в роду. Анализу подвергались выраженность клинических проявлений (жалобы, объективный статус больного), результаты лабораторных и инструментальных методов исследования (микроскопия и посев мокроты на МБТ, чувствительность к противотуберкулезным препаратам, рентгенологическое исследование легких) на момент начала заболевания, а также через 2 месяца лечения.
Определение количества эритроцитов, концентрации гемоглобина, общего числа лейкоцитов и их отдельных морфологических форм, величину СОЭ, уровень печеночных проб (билирубина, аланинаминотрансферазы и аспартатаминтрансферазы) исследовали общепринятыми методами [Меньшиков, 1987].
2.2.2. Молекулярно-генетические методы
В ходе выполнения работы было исследовано 6 полиморфных вариантов генов цитохромов Р450 (CYP2C19, CYP2E1) и глутатионовых S-трансфераз (GSTT1, GSTM1 и GSTP1) (табл. 4).
Для генотипирования индивидов по указанным полиморфизмам использовали образцы тотальной ДНК из банка НИИ медицинской генетики (семейная выборка больных БА и контрольная выборка) и ДНК, выделенную из цельной венозной крови (семейная выборка больных ТБ) по стандартной неэнзиматической методике [Маниатис и др., 1984; Lahiri et al., 1992]. Выделенную ДНК замораживали и хранили при температуре -20С до проведения эксперимента.
Генотипирование осуществляли с помощью полимеразной цепной реакции (ПЦР), используя структуру праймеров и параметры температурных циклов, описанных в литературе (табл. 5). Смесь для ПЦР содержала 0,5-2,0 мкл специфической пары праймеров с концентрацией 1 о.е./мл, 1,2-1,8 мкл 10 буфера для амплификации с концентрацией MgCl2 0,5-2,0 mM, 0,5-1,0 е.а. Taq ДНК-полимеразы («Сибэнзим», «Медиген», Новосибирск) и 100-200 нг геномной ДНК. Смесь помещали в 0,5 мл пробирки типа «Эппендорф», наслаивали сверху минеральное масло для предотвращения испарения и амплифицировали в автоматических минициклерах «MJ Rеsearch» (США) и «ЦиклоТемп 105» (Россия-Австрия).
Программа амплификации включала предварительную денатурацию при 94С в течение 5 минут, с последующими 30-35 циклами отжига при температуре 60С (1мин.), элонгации цепи при 72С (40 сек.) и денатурации при 94С (40 сек.). Программу завершала финальная элонгация при 72С в течение 3 минут. Амплификат подвергали гидролизу соответствующей рестриктазой (табл.4) при оптимальной для фермента температуре на протяжении 12-24 ч. Рестрикционная смесь включала 5-7 мкл амплификата, 1,0-1,2 мкл 10 буфера для рестрикции, поставляемого фирмой - производителем («Сибэнзим», Новосибирск), и 1-5 единиц активности фермента (в зависимости от эффективности его работы). Продукты рестрикции фракционировали 20-30 минут в 3% агарозном геле при напряжении 120 В. Фрагменты ДНК окрашивали бромистым этидием и визуализировали в ультрафиолетовом свете с применением компьютерной видеосъемки на приборе «UV-VIS Imager-II» (США).
Таблица 5
Характеристики исследованных полиморфных вариантов генов системы биотрансформации ксенобиотиков
Ген
Локализация
Полиморфизм
Структура праймеров

Фермент

реакции
Литературный источник
СYP2C19

10q24.1-24.3

Экзон 5
681GA

5'-aat-tac-aac-cag-agc-ttg-gc

5'-tat-cac-ttt-cca-taa-aag-caa-g
SmaI
De Morais et al., 1994
CYP2E1

10q24.3-qter

5'-фланкирующий регион
1293GC
5'-cca-gtc-gag-tct-aca-ttg-tca
5'-ttc-att-ctg-tct-tct-aac-tgg
PstI
Salama et al., 1999
10q24.3-qter Интрон 6
7632TA
5'-ctg-ctg-cta-atg-gtc-act-tg
5'-gga-gtt-caa-gac-cag-cct-ac
DraI
Lin et al., 1998
GSTM1
1p13.3
Делеция
5'-tgc-ttc-acg-tgt-tat-gga-ggt-tc
5'-gtt-ggg-ctc-aaa-tat-acg-gtg-g
-
Spurdle et al., 2001
GSTT1
22q11.23
Делеция
5'-ggt-cat-tct-gaa-ggc-caa-gg
5'-ttt-gtg-gac-tgc-tga-gga-cg
-
GSTP1
11q13
Экзон 5
313AG
5'- gta-gtt-tgc-cca-agg-tca-ag
5'- agc-cac-ctg-agg-ggt-aag
BsoMAI
Ishii et al., 1999
2.2.3. Статистические методы анализа
Распределение генотипов по исследованным полиморфным локусам проверяли на соответствие равновесию Харди-Вайнберга (РХВ) с помощью точного теста Фишера [Вейр, 1995].
Ожидаемую гетерозиготность полиморфизма генов цитохромов Р450 (CYP2C19 и CYP2E1) и глутатионовых S-трансфераз (GSTT1, GSTM1 и GSTP1) рассчитывали по опубликованным методикам [Животовский, 1984]. Относительное отклонение ожидаемой гетерозиготности от наблюдаемой (D) рассчитывали по формуле:
D=(hobs-hexp)/hexp,
где hobs и hexp - ожидаемая и наблюдаемая гетерозиготность соответственно.
Для анализа ассоциации маркеров исследуемых генов с туберкулезом и бронхиальной астмой, а также с качественными патогенетически важными признаками заболеваний, сравнивали частоты аллелей и генотипов в группах больных и здоровых индивидов, используя критерий ч2 с поправкой Йетса на непрерывность, а также с применением двустороннего точного критерия Фишера.
Об ассоциации разных генотипов (или их комбинаций) с заболеваниями судили по величине отношения шансов (odds ratio (OR)) [Pearce, 1993], величины, показывающей, во сколько раз выше вероятность заболеть для индивида с определенным генотипом (или комбинацией генотипов):
OR= (A/B)/(C/D), где
А - число (процент) людей с данным генотипом (комбинацией генотипов) в группе больных;
С - число (процент) людей с данным генотипом (комбинацией генотипов) в группе здоровых;
В - число (процент) индивидов, не имеющих данного генотипа (комбинации генотипов) в группе больных;
D - число (процент) индивидов, не имеющих данного генотипа (комбинации генотипов) в группе здоровых.
Значения OR>1 указывают на возможную положительную ассоциацию с заболеванием. Обсуждение величин OR проводили при уровне значимости не более 5%.
При анализе семейного материала для поиска ассоциаций с генетическими маркерами был использован тест на неравновесие по сцеплению - Transmission/Disequilibrium Test (TDT):
TDT= (b-c)2/(b+c)2,
где b и c - число наследуемых аллелей от гетерозиготных родителей [Spielman, 1993]. TDT рассматривает вероятности передачи маркерного аллеля от гетерозиготного родителя больному потомку и отклонение этой вероятности от 0,5 может появиться только тогда, когда есть сцепление между маркерным локусом и локусом, контролирующим болезнь [Аксенович, 2001]. Этот тест имеет ряд существенных преимуществ: помимо того, что обладает высокой статистической мощью, к тому же устойчив к эффектам популяционной структуры (подразделенность, гетерогенность, примесь и т.д.), практически безотносителен к типу наследования.
При статистически значимых отклонениях распределения количественных признаков от нормального (по данным теста Шапиро-Уилки), сравнение проводили с помощью непараметрических критериев Манна-Уитни и Краскела-Уоллиса.
Для сравнения средних значений признаков до и после лечения применяли тест Уилкоксона [Гланц, 1998].
Для оценки параметров распределения, включая средние значения, стандартные отклонения использовали стандартный набор статистических процедур [Лакин, 1990]. Усреднение статистически значимых коэффициентов корреляции проводили с помощью z-преобразования Р. Фишера, после проверки на значимость различий полученных коэффициентов корреляции [Лильин и др., 1984].
Все расчеты проводили с использованием пакета прикладных программ “STATISTIСA for Widows 6.0” и в программе “Microsoft Excel 97”.
ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
3.1. Полиморфизм генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2E1, CYP2C19) у жителей г. Томска

Для реализации поставленных задач в рамках данного исследования проведен анализ полиморфизма генов биотрансформации ксенобиотиков I и II фазы метаболизма в отношении риска развития БА и ТБ, а также для значимых при заболеваниях качественных и количественных признаков.
В подавляющем большинстве случаев совместное функционирование обеих фаз метаболизма обеспечивает обезвреживание десятков тысяч ксенобиотиков всех химических классов. Предположительно, эта система возникла или эволюционировала в результате адаптации к техногенному загрязнению среды. Однако, учитывая, что загрязнение среды стало серьезным только в конце XX века, а также, что система метаболизма играет важную роль в перекисном окислении липидов и в биотрансформации многих эндогенных веществ, например, холестерина, витамина D, простагландинов и лейкотриенов, желчных кислот, токоферолов, стероидов и т.д. [Waxman, Azaroff, 1992], можно предположить, что ферменты биотрансформации первоначально функционировали как система метаболизма эндогенных веществ, а с изменяющимися условиями окружающей среды стали участвовать в метаболизме ксенобиотиков вследствие их широкой субстратной специфичности.
Одной из важных особенностей ферментативной системы метаболизма являются достаточно выраженные этнические различия. Это один из фактов, который необходимо учитывать при анализе связи полиморфизма генов с развитием заболевания, так как восприимчивость к патологии индивида одной популяции, определяющаяся сочетанием, как правило, распространенных вариантов генов, значительно различается с таковой в других популяционных группах. Поэтому, прежде чем анализировать данные гены в отношении риска возникновения болезни, следует рассмотреть популяционные особенности исследуемой группы здоровых индивидов г. Томска по данным локусам.
В ходе выполнения работы было исследовано 6 полиморфных вариантов генов цитохромов Р450 - CYP2C19 (681G>A) и CYP2E1 (7632T>A; 1293G>C) и глутатионовых S-трансфераз - GSTT1 (делеция), GSTM1 (делеция) и GSTP1 (313A>G).
Для изученных полиморфных вариантов генов GSTP1 (313A>G) и цитохромов Р450 - CYP2E1 (7632T>A; 1293G>C), CYP2C19 (681G>A) в контрольной выборке распределение генотипов соответствовало ожидаемым при равновесии Харди-Вайнберга (табл. 6). Для полиморфизма 313А>G гена GSTP1 отмечена незначительная гетерогенность между наблюдаемыми и ожидаемыми значениями генотипов за счет недостатка гетерозигот.
Осуществить проверку распределения генотипов по генам GSTT1 и GSTM1 на соответствие ожидаемым при равновесии Харди-Вайнберга невозможно, поскольку не устанавливалось гетерозиготного носительства.
Частоты встречаемости аллелей и генотипов изучаемых локусов в исследованной выборке здоровых жителей г. Томска оказались близки к значениям таковых в других европеоидных популяциях (рис. 2; табл. 6, 7). У жителей г. Томска частота «нулевого» генотипа для генов GSTT1 и GSTM1 составила 23,7% (n=32) и 54,8% (n=74), соответственно. Сходная ситуация описана для GSTT1 и GSTM1 описана для жителей г. Новосибирска [Ляхович и др., 2000; Вавилин и др., 2002]. Полученные частоты как для генов GSTT1 и GSTM1, так и для остальных полиморфных вариантов генов системы метаболизма, изучаемых в настоящей работе близки к значениям таковых в других европеоидных популяциях.
Таблица 6
Распределение генотипов по маркерам генов ферментов метаболизма ксенобиотиков у здоровых индивидов г. Томска
Ген
Полимор-
физм
Генотип
N.O.
N.E.
Частота аллеля
2
(d.f.=1)
hobs
hexp
D
GSTP1
313AG
AA
AG
GG
58
45
16
54,46
52,09
12,46
G=32,4
1,97
0,3782
0,4377
-0,136
CYP2C19
681GA
*1/*1
*1/*2
*2/*2
90
26
0
91,46
23,09
1,46
CYP2C19*2=11,2
1,32
0,2241
0,1990
-0,126
CYP2E1
7632TA
ТТ
ТА
АА
106
20
2
105,13
21,75
1,13
A=9,4
0,45
0,1562
0,1699
-0,081
CYP2E1
1293GC
C1C1
C1C2
C2C2
113
9
0
113,17
8,67
0,17
C2=3,7
0,04
0,0738
0,0710
-0,038
Примечание. N.O. и N.E. - наблюдаемая и ожидаемая численность генотипов; критерий 2 использован для оценки соответствия наблюдаемого распределения генотипов ожидаемому при равновесии Харди-Вайнберга; d.f. - число степеней свободы; hobs и hexp - наблюдаемая и ожидаемая гетерозиготность, соответственно; D -относительное отклонение наблюдаемой гетерозиготности от ожидаемой.
Рис. 2. Частоты аллелей полиморфных вариантов генов GSTP1, CYP2E1 и CYP2C19 у жителей г. Томска (собственные данные) и в различных этнических группах (по: Brockmoller et al., 1996; Morita et al., 1997; Farker et al., 1998; Lin et al., 1998; Ishii et al., 1999; Miller et al., 2002; Yang et al., 2004).
Таблица 7
Частоты «нулевых» генотипов генов глутатионовых S-трансфераз в некоторых этнических группах
Ген
Этническая принадлежность
Частота «нулевого» генотипа, %
Литературный источник
GSTT1
Европеоиды США, n=152
17,1
Crump et al., 2000
Корейцы, n=220
45,9
Kim et al., 2000
GSTM1
Европеоиды CША, n=927
54,0
Miller et al., 2002
Корейцы, n=220
44,1
Kim et al., 2000
Учитывая функциональную значимость системы метаболизма ксенобиотиков, многие работы по изучению полиморфизма генов соответствующих ферментов в первую очередь направлены на изучение эффективности лекарственной терапии различных заболеваний и связанными с ней проявлениями побочных эффектов. Другим аспектом интереса к этой системе является то, что в некоторых случаях можно оценить вклад в развитие заболевания полиморфизмов генов, отвечающих за взаимодействие организма человека с факторами окружающей среды. Кроме того, ферменты системы биотрансформации ксенобиотиков активно задействованы в метаболизме различных эндогенных веществ, в том числе и медиаторов воспаления. Поэтому можно предполагать, что наличие генетически обусловленных индивидуальных особенностей функционирования этой системы способствует развитию патологий. Глутатионовым S-трансферазам и цитохромам Р450 придают важное значение в формировании подверженности к заболеваниям, триггерами которых выступают неблагоприятные факторы внешней среды, например, онкологическая патология, инфекционные и аллергические заболевания и др. Из исследуемых генов наиболее изученными в отношении БА и ТБ являются гены глутатионовых S-трансфераз, причем касательно ТБ работы направлены в основном на изучение гепатотоксичности от применяемых для лечения заболевания препаратов, а не на поиск участия генов в развитии и патогенезе болезни.
В целом, результаты анализа частот аллелей и генотипов генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 у жителей г. Томска показывают значения близкие для европеоидных популяций, что закономерно, так как этническая принадлежность была одним из основных критериев отбора для исследования.
3.2. Оценка роли полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза3.2.1. Ассоциация полиморфных вариантов генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 с атопической бронхиальной астмой
Интерес исследователей к изучению полиморфизма генов ферментов биотрансформации ксенобиотиков при БА, отвечающих за взаимодействие организма с факторами окружающей среды, вызван экологической обусловленностью заболевания. Показано, что «нулевые» генотипы генов GSTT1 и GSTM1 как в отдельности, так и в комбинации друг с другом являются факторами генетической предрасположенности к БА [Иващенко и др., 2001]. Кроме того, выявлена связь клинических особенностей течения заболевания с полиморфизмом генов GSTT1, GSTM1, CYP1A1 и NAT2 и показана модифицирующая роль курения на развитие БА [Ляхович и др., 2000, 2002]. Отмечены связь фенотипических проявлений БА (положительные кожные тесты, высокий уровень общего IgE) с полиморфизмом 313A>G гена GSTP1 ферментативной системы биотрансформации [Fryer et al., 2000] и различия в его функциональной значимости для БА атопического и неатопического генеза [Tamer et al, 2004]. При исследовании связи полиморфизма 313A>G гена GSTP1 с астмой, вызванной воздействием толуол диизоцианата установлено, что частота гомозиготного генотипа G/G этого гена снижена у индивидов с астмой, а также понижена у лиц, имеющих размах гиперреактивности бронхов от умеренной до критической по сравнению с индивидами, показывающими нормальную и низкую активность таковой по результатам диагностического теста с метахолином [Cristina et al., 2002]. Кроме того, показано, что материнское наследование G/G и A/A генотипов полиморфизма 313A>G гена GSTP1 может влиять на последующее развитие астмы и формирование особенностей ее клинического фенотипа у детей [Carroll et al., 2005].
Таблица 8
Распределение генотипов исследуемых генов ферментов биотрансформации у больных бронхиальной астмой и здоровых
Генотип
БА
Контрольная группа
р
n
%
n
%
GSTT1
GSTT1+
99
75,6
103
76,3
1,000
GSTT1 0/0
32
24,4
32
23,7
GSTM1
GSTM1+
38
29,0
61
45,2
0,008
GSTM1 0/0
93
71,0
74
54,8
GSTP1 313AG
AA
55
48,7
58
48,7
0,648
AG
47
41,6
45
37,8
GG
11
9,7
16
13,5
CYP2E1 7632TA
TT
88
72,1
106
82,8
0,049
TA
33
27,1
20
15,6
AA
1
0,8
2
1,6
CYP2E1 1293GC
C1C1
106
89,8
113
92,6
0,498
C1C2
12
10,2
9
7,4
C2C2
0
0,0
0
0,0
CYP2C19 681GA
*1/*1
91
66,4
90
77,6
0,068
*1/*2
44
32,1
26
22,4
*2/*2
2
1,5
0
0,0
Примечание. n - абсолютное значение; р - достигнутый уровень значимости по точному тесту Фишера.
По локусам GSTT1, GSTP1 и CYP2E1 (1293GC) существенных различий между выборкой больных БА и контрольной группой не обнаружено (табл. 8). Для гена GSTM1 показано, что частота функционального генотипа встречалась у больных значимо реже (р=0,008). Это позволяет говорить о том, что для носителей делеции гена GSTM1, повлекшей за собой утрату активности соответствующего фермента, существует вероятность дисбаланса процессов детоксикации экзогенных и эндогенных веществ, что повышает для них риск развития заболевания. Об этом свидетельствует и тот факт, что носители делеционного генотипа показывают в два раза выше риск развития БА по сравнению с индивидами, имеющими функциональный генотип (OR=2,02; 95% CI: 1,18-3,46; p=0,009). Эта ассоциация может быть следствием множественности биологических функций глутатионовых S-трансфераз: участие в метаболизме эндогенных медиаторов воспаления (простагландинов, лейкотриена С4), нейромедиаторов. В настоящее время ведется дискуссия по поводу взаимосвязи ферментов метаболизма с регуляторным цитокиновым звеном. Предполагается, что образующиеся реактивные метаболиты в ходе реакций I фазы биотрансформации ксенобиотиков и их дальнейшее ковалентное связывание с макромолекулами клетки может привести к образованию аутоантигенов, вызывающих клеточный или гуморальный иммунный ответ [Ляхович и др., 2000]. Учитывая важную роль глутатионовых S-трансфераз в метаболизме эндогенных и экзогенных соединений, можно предполагать, что образующиеся реактивные метаболиты (даже при условии повышенного их образования в силу полноценной работы ферментов I фазы) у индивидов с функциональными генотипами GST, эффективно утилизируются, и, таким образом, не способствуют развертыванию воспалительных реакций и утяжелению уже начавшегося воспалительного процесса.
Исследование полиморфизма 7632TA гена CYP2E1 показало, что гетерозиготный генотип T/A чаще встречался в группе больных БА (2=4,22, р=0,049). Оценка OR показала, что гетерозиготные носители имеют повышенный риск развития заболевания по сравнению с контрольной группой (OR=2,0; 95% CI: 1,03-3,91; p=0,040). Данное обстоятельство является несколько неожиданным, поскольку предполагается, что для гетерозигот характерна более благоприятная активность соответствующего фермента для поддержания состояния здоровья, а не низкая или высокая у гомозигот, так как известно, что с аллелем 7632А часто ассоциированы редкие мутации, влияющие на каталитическую активность соответствующего белка [Hu et al., 1997].
При сравнении распределения частот генотипов полиморфизма 681GA гена CYP2C19 фермента I фазы метаболизма показана гетерогенность между группами больных БА и здоровыми за счет тенденции к повышению частот гетерозигот *1/*2 у пробандов c БА (2=3,32, р=0,068). При анализе частот аллелей этого локуса отмечена тенденция к преобладанию аллеля CYP2C19*2 у больных (2=3,52, р=0,061) по сравнению со здоровыми.
Таблица 9
Распределение индивидов разного пола по группам, характеризующим степень тяжести бронхиальной астмы
Группы сравнения
Легкая БА
Среднетяжелая БА
Тяжелая БА
n
%
n
%
n
%
Мужчины
14
56,0
32
60,4
19
36,5
Женщины
11
44,0
21
39,6
33
63,5
Примечание. n - абсолютное значение индивидов в группе.
Учитывая, что БА имеет довольно сложный клинический фенотип, проявляющийся от повышенной чувствительности бронхов до летальных форм, проследить участие генов системы биотрансформации в патогенезе возможно только при тщательном анализе особенностей сформировавшегося клинического фенотипа БА. Поэтому было проанализировано распределение частот генотипов и аллелей изучаемых локусов в отношении групп с различной степенью тяжести заболевания. Оценка тяжести БА основывается на клинических проявлениях, кроме того, учитывается вариабельность изменения бронхиальной проходимости в течение суток.
При сравнении групп, различающихся по степени тяжести (табл. 9) показано, что в группе с тяжелой БА преобладали индивиды женского пола (63,5%) в отличие от двух других представленных групп.
Рис. 3. Распределение «нулевых» (“0/0”) генотипов генов GSTT1 и GSTM1 у больных бронхиальной астмой, различающихся по степеням тяжести.
У больных БА с различными степенями тяжести заболевания установлены различия между легкой (n=26) и тяжелой (n=50) степенью тяжести по частотам генотипов гена GSTT1: «нулевой» генотип гена преобладал у лиц с легкой БА (38,5% и 16,0% у больных легкой и тяжелой БА, р=0,045) (рис. 3).
Предположив, что ферменты метаболизма ксенобиотиков способствуют сенсибилизации, осуществляя детоксикацию низкомолекулярных соединений, что клинически может проявляться проявлениями поливалентной аллергии, были проанализированы результаты кожных аллергопроб с полиморфизмом исследуемых генов ферментов метаболизма ксенобиотиков. В результате анализа не выявлено статистически значимых различий между группами, различающимися по наличию/отсутствию сенсибилизации (р>0,05).
В целом, полученные данные свидетельствуют о связи изученных полиморфных вариантов генов у жителей г. Томска как с БА, так и с отдельными клиническими признаками заболевания. Результаты работы показали вклад делеционного полиморфизма гена GSTM1 в развитии БА, основанного на функциональной значимости глутатионовых S-трансфераз в метаболизме эндогенных и экзогенных ксенобиотиков, а также выявили, что риск развития БА увеличивает гетерозиготный генотип гена CYP2E1 (полиморфизм 7632TA). Кроме того, установлено значимое увеличение частоты «нулевого» генотипа гена GSTT1 у больных с легким течением заболевания.
3.2.2. Ассоциация полиморфизма генов ферментов метаболизма ксенобиотиков с туберкулезом
Известно, что при воспалении и инфекции происходит изменение уровня активности цитохромов Р450. Этот эффект опосредован цитокинами, которые угнетают транскрипцию генов и накопление мРНК различных изоформ цитохрома Р450 в клетках [Renton, 2004]. Такая реакция взаимодействия иммунной системы и системы метаболизма ксенобиотиков на внедрение инфекционного агента обеспечивает защиту от последствий возможной неконтролируемой активации потенциально опасной для организма ферментативной системы и снижает риск развития оксидативного стресса. В связи с этим представляется важным изучение полиморфизма генов системы метаболизма ксенобиотиков в отношении ТБ инфекции.
Таблица 10
Распределение генотипов исследуемых генов ферментов биотрансформации у больных туберкулезом и здоровых
< и т.д.................


Генотип
ТБ
Контрольная группа
р
n
%
n
%
GSTT1
GSTT1 +
254
81,9
103
76,3
0,195
GSTT1 0/0
56
18,1
32
23,7
GSTM1
GSTM1 +
126
40,6
61
45,2
0,404
GSTM1 0/0
184
59,4
74
54,8
GSTP1 313AG
AA
144
47,2
58
48,7
0,034
AG
142
46,6
45
37,8
GG
19
6,2
16
13,5
CYP2E1 7632TA
ТТ
246
80,4
106
82,8
0,235
ТА
59
19,3
20
15,6
АА
1
0,3
2
1,6
CYP2E1 1293GC
C1C1
287
92,3
113
92,6
0,498
C1C2
24
7,7
9
7,4
C2C2
0
0,0
0
0,0
CYP2C19 681GA
*1/*1
234
76,5
90
77,6
0,828

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.