На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Уравнение прямой, проходящей через две заданные точки. Вычисление площади ромба. Разложение квадратного трехчлена на линейные множители. Нахождение производной функции и асимптот графика. Правила дифференцирования частного произведения и сложной функции.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 24.04.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


25
Академия труда и социальных отношений
Курганский филиал
Социально-экономический факультет
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Общий курс высшей математики»
Студент гр. ЗМб 1338
Ст. преподаватель
Курган - 2009
Задание 03

В ромбе ABCD известны координаты вершин А и С и тангенс внутреннего угла С. Найти уравнения диагоналей и сторон, координаты двух других вершин, а также площадь этого ромба, если А(4,2), С(16;18), . Сделать чертеж.
Решение:
Зная координаты вершин А и С запишем уравнение диагонали АС как уравнение прямой, проходящей через две заданные точки:
12(y-2)=16(x-4);
12y-24=16х-64
16х-12у-40=0 /:4
4х-3у-10=0 - уравнение диагонали А С в форме общего уравнения прямой.
Перепишем это уравнение в форме уравнения прямой с угловым коэффициентом:
-3y=-10-4х;
3y=4x-10;
y= откуда k А С=
Так как в ромбе диагонали взаимно перпендикулярны, то угловой коэффициент диагонали BD будет равен
КВD =
Само же уравнение диагонали BD найдем как уравнение прямой, проходящей через заданную точку в направлении, определяемом угловым коэффициентом КBD.
В качестве «заданной точки» возьмем точку Е пересечения диагоналей ромба, которая лежит на середине отрезка АС, вследствие чего:
Е (10;10)
Итак, уравнение диагонали BD запишем в виде
у - yE= КВD (x-xE)
y-10= (x-10);
y-10=x+ / 4
4у-40=-3х+30
3х+4у-70=0 - уравнение диагонали BD
Чтобы найти уравнение сторон ромба, надо определить только угловые коэффициенты КАВ = КCD и КВС = КAD прямых, на которых эти стороны лежат, ибо точки, через которые эти прямые проходят, известны - это вершины А и С ромба.
Для определения указанных угловых коэффициентов воспользуемся формулой , позволяющей вычислять тангенс угла ц между двумя заданными прямыми по их угловым коэффициентам К1 и К2; при этом угол ц отсчитывается против часовой стрелки от прямой у = К1х + b1 до прямой у = К2х + b2. Формула оказывается удобной, потому что уравнение диагонали АС уже найдено (и, следовательно, известен ее угловой коэффициент КАС), а положение сторон ромба относительно этой диагонали однозначно определяется внутренними углами А и С, которые равны между собой и для которых по условию известен их тангенс ().
Так диагонали ромба делят его углы пополам, то, положив из формулы для тангенса двойного угла при найдем tg ц:
Положим z = tg ц; тогда , тогда
15 2z = 8 (1-z2)
30z=8-8z2
8z2+30z-8=0 /:2
4z2+15z-4=0
D=152-4 4 (-4)= 225+64=289
z1=;
z2=
Но т.к. угол в ромбе ц всегда острый корень z2=-4 отбрасываем и получаем в итоге, что tg ц =
Угол ц является углом между прямыми ВС и АС, с одной стороны, и прямыми АС и CD - с другой (см. чертеж).
Потому в первом случае по формуле имеем
откуда при то получим
4()=1+;
= /3
16-12 KBC=3+4KBC;
16 KBC=13;
KBC=

Во втором случае по формуле имеем =;
При КАС = получим:
;
4(KcD-)=1+KcD;
4KcD-=1+ KcD / 3;
12KcD-16=3+4KcD;
8KcD =19
KcD=
Так как противоположные стороны ромба параллельны, то тем самым мы определили угловые коэффициенты всех его сторон.
КCD = KAB = ;
KBC = KAD = .
Зная теперь эти угловые коэффициенты и координаты вершин А и С, по уже использовавшимся выше формулам найдем уравнения прямых АВ, CD, BC и AD.
Уравнение АВ: у - уA = KA B (х - хA),
у -2 = (х-4) /8;
8у-16=19х-76;
19 х-8 у-60=0.
Уравнение CD: у - уC= КCD(х - xC)
у -18= ( х-16) / 8;
8у -144=19х-304;
19 х-8 у-160=0.
Уравнение ВС: у - уC= КBC ( х xC);
у -18=( х - 16);
у - 18= х - 13 / 16;
16у -288 = 13х - 208;
13х -16 у +80=0
Уравнение AD: у - уA = КAD( х -xA);
у -2=( х -4);
у -2= х - /16;
16у -32= 13х-52;
13х-16у-20=0
Вершины ромба являются точками пересечения его соответствующих сторон. Поэтому их координаты найдем путем совместного решения уравнений этих сторон.
19х -8у -60 = 0 / (-2)
13х -16у +80= 0
-38х+16у+120=0
13х-16у+80=0
-25х = - 200
х = 8
13 8 -16у+80=0
104-16у+80=0
16у=184
у=11,5 т.В (8;11,5)
Для вершины D:
19х -8у +-160 = 0 / (-2)
13x - 16 y - 20 = 0
-38х + 16у +320 = 0
13x - 16 y - 20 = 0
-25х = - 300
х=12
13 12 - 16у-20 = 0
156 -16 у-20=0
16у - 136
у=8,5 т.D (12;8,5)
Координаты этих точек удовлетворяют ранее найденному уравнению 3х + 4у - 70 = 0 диагонали BD, что подтверждает их правильность.
Площадь ромба вычислим по формуле S = ? d1d2, где d1 и d2 - диагонали ромба.
Полагая d1 = |АС|, а d2 = |BD|, длины этих диагоналей найдем как расстояния между соответствующими противоположными вершинами ромба:
d1 =
d2 =
В итоге площадь ромба будет равна S = • 20 • 5 = 50 кв.ед.
Ответ:
АС: 4х - 3у - 10 = 0;
BD: 3х + 4у - 70= 0;
АВ: 19х -8у -60 = 0;
CD:19 х -8у - 160 = 0;
ВС: 13х -16у + 80 = 0;
AD: 13х -16у - 20=0;
В (8;11,5);
D (12; 8,5);
S = 50 кв.ед.
Задание 27

Найти предел
а)
Решение:
а) Функция, предел которой при х> 2 требуется найти, представляет собой частное двух функций. Однако применить теорему о пределе частного в данном случае нельзя, так как предел функции, стоящей в знаменателе, при х> 2 равен нулю.
Преобразуем данную функцию, умножив числитель и знаменатель дроби, находящейся под знаком предела, на выражение , сопряженное знаменателю. Параллельно разложим квадратный трехчлен в числителе на линейные множители:
===
==
2 х 2 - 3 х - 2=0
D=3 2 -42(-2)=9+16=25
х1 == =2;
х2 = == -
==
===12,5
Ответ: 12,5
б)
Умножим числитель и знаменатель дроби, стоящей под знаком предела, на выражение, сопряженное к знаменателю:
==
=
==
+=
Найдем каждый сомножитель.
====
+)=(=1+1=2.
Предел есть первый замечательный предел.
Таким образом.
после замены t=3x будет равен =3
Аналогично =5
Получим
=
1
В итоге получим:
Ответ:
в)
Преобразуем основание данной функции:
Ведем новую переменную t= , тогда
t (4x-1) = 2
4xt - t = 2
4xt =2 + t
x=
x=
Заметим, что предел функции t при x > ? равен нулю т.е t > 0 при x > ?. Следовательно
===
=
Воспользуемся теоремой о пределе произведения, следствием теоремы о пределе сложной функции, вторым замечательным пределом получим.
Ответ:
г)
Представим выражение под знаком предела в виде
===
==
Найдем значение к и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.