На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Основные понятия и факты теории линейных операторов. Определение и примеры линейных операторов. Ограниченность и норма линейного оператора. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 13.06.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


1
Оператор сдвига
Содержание
1. Введение
Часть 1. Оператор сдвига в гильбертовом пространстве
§1. Основные понятия и факты теории линейных операторов
1. Определение и примеры линейных операторов
2. Ограниченность и норма линейного оператора
3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов
4. Обратный оператор
5. Спектр оператора. Резольвента

§2. Унитарные операторы. Оператор сдвига
6. Взвешенные сдвиги
7. Операторы сдвига в пространстве функции на единичной окружности

Часть 2. Нестандартное расширение оператора сдвига
1. Нестандартное расширение поля действительных чисел
2. Расширение пространств и
3. Операторы сдвига в нестандартном расширении
Заключение
Список литературы
ВВЕДЕНИЕ
Тема для написания дипломной работы была выбрана не случайно. Теория линейных операторов - это интересная и важная область, которая позволяет не только активно применять уже имеющиеся знания по анализу, но и узнать много нового.
В данной работе рассматриваются линейные операторы одностороннего и двустороннего сдвига. Вводятся основные понятия: спектр, резольвента, спектральный радиус оператора. Рассматриваются задачи, в ходе решения которых выясняются некоторые свойства спектров операторов сдвига. Определяется класс взвешенных сдвигов, выводится соотношение для нормы и спектрального радиуса оператора взвешенного сдвига.
Известно, что если рассматривать поле действительных чисел при условии, что аксиома Архимеда не выполняется, то получим новое, расширенное поле, в котором существуют бесконечно большие и бесконечно малые элементы. На основании этого расширения можно построить весь математический анализ - нестандартный анализ.
Естественно, часть основных понятий и свойств линейных операторов было бы интересно определить и доказать и в нестандартном анализе, что и было сделано в работе.
В частности, был установлен следующий факт: хотя стандартный оператор сдвига не имеет собственных векторов, но его нестандартное расширение имеет «почти собственные» векторы, т. е. векторы, в определенном смысле бесконечно близкие к собственным.
Часть 1. Оператор сдвига в гильбертовом пространстве
§1. Основные понятия и факты теории линейных операторов
1. Определение и примеры линейных операторов
Пусть Е и Е1 - два линейных нормированных пространства над полем комплексных чисел. Линейным оператором, действующим из Е в Е1 называется отображение ( удовлетворяющее условию
для всех .
Совокупность DA всех тех , для которых отображение А определено, называется областью определения оператора А; вообще говоря, не предполагается, что DA=E , однако мы всегда будем считать, что DA есть линейное многообразие, то есть, если х,у DA , то и при любых .
Определение 1. Оператор называется непрерывным в точке х0 DA , если для любой окрестности V точки у0=Ах0 существует такая окрестность U точки х0 , что АхV , как только х. Оператор А называется непрерывным, если он непрерывен в каждой точке х DA.
Поскольку Е и Е1 - нормированные пространства, то это определение равносильно следующему: оператор А называется непрерывным, если выполняется следующее условие: ( .
Примеры линейных операторов
Пусть А - линейный оператор, отображающий n-мерное пространство Rn c базисом е1, …, еn в m-мерное пространство Rm с базисом f1, …,fm . Если х - произвольный вектор из Rn , то и, в силу линейности оператора А .
Таким образом, оператор А задан, если известно, в какие элементы он переводит базисные векторы е1,…, еn . Рассмотрим разложение вектора Аеi по базису f1, …, fm . Имеем . Следовательно, оператор А определяется матрицей коэффициентов аij . Образ пространства Rn и Rm представляет собой линейное пространство, размерность которого равна, очевидно, рангу матрицы , т.е. во всяком случае не превосходит n (свойство ранга матрицы). Отметим, что в конечномерном пространстве всякий линейный оператор автоматически непрерывен.
Рассмотрим гильбертово пространство Н и в нем некоторое подпространство Н1 . Разложив Н в прямую сумму подпространства Н1 и его ортогонального дополнения, т.е. представив каждый элемент в виде ( положим Рh=h1. Этот оператор Р естественно назвать оператором проектирования, проектирующим все пространство Н на Н1. Очевидно, что Р является линейным и непрерывным оператором.
Рассмотрим в пространстве непрерывных функций на отрезке [a;b] с нормой оператор, определяемый формулой
, (1)
где k(s,t) - некоторая фиксированная непрерывная функция двух переменных. Функция непрерывна для любой непрерывной функции , так что оператор (1) действительно переводит пространство непрерывных функций в себя. Его линейность очевидна. Можно доказать также, что он непрерывен.
Тот же оператор можно рассмотреть на множестве непрерывных функций С2[a,b] с нормой , где он также непрерывен.
4. Один из важнейших для анализа примеров линейных операторов - оператор дифференцирования. Его можно рассматривать в пространстве C[a,b] : Df(t) = .Этот оператор D определен не на всем пространстве непрерывных функций, а лишь на линейном многообразии функций, имеющих непрерывную производную. Оператор D линеен, но не непрерывен. Это видно, например, из того, что последовательность сходится к 0 ( в метрике С[a,b]), а последовательность не сходится.
Оператор дифференцирования можно рассматривать как оператор, действующий из пространства D1 непрерывно дифференцируемых функций на [a,b] с нормой в пространство С[a,b]. В этом случае оператор D линеен и непрерывен и отображает все D1 на все С[a,b].
Рассмотрение оператора дифференцирования как оператора, действующего из D1 в С[a,b], не вполне удобно, так как, хотя при этом мы и получаем непрерывный оператор, определенный на всем пространстве, но не к любой функции из D1 можно применять этот оператор дважды. Удобнее рассматривать оператор дифференцирования в еще более узком пространстве, чем D1 , а именно в пространстве бесконечно дифференцируемых функций на отрезке [a; b], в котором топология задается счетной системой норм . Оператор дифференцирования переводит все это пространство в себя, и, как можно проверить, он непрерывен на этом пространстве.
2. Ограниченность и норма линейного оператора
Определение 2. Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определен на всем Е и каждое ограниченное множество переводит снова в ограниченное. Между непрерывностью и ограниченностью линейного оператора существует тесная связь, т.е. справедливы следующие утверждения:
Теорема 1. Для того, чтобы линейный оператор был непрерывным, необходимо и достаточно, чтобы он был ограничен.
1. Пусть оператор А неограничен. Тогда существует МЕ - ограниченное множество, такое, что множество АМЕ1 не ограничено. Следовательно, в Е1 найдется такая окрестность нуля V, что ни одно из множеств АМ не содержится в V. Но тогда существует такая последовательность хnM , что ни один из элементов Ахn не принадлежит V и получаем, что в Е, но не сходится к 0 в Е; это противоречит непрерывности оператора А.
2. Если оператор А не непрерывен в точке 0, то в Е1 существует такая последовательность , что Ахn не стремится к 0. При этом последовательность ограничена, а последовательность не ограничена. Итак, если оператор А не непрерывен, то А и не ограничен. Утверждение доказано.
Если Е и Е1 - нормированные пространства, то условие ограниченности оператора А, действующего из Е в Е1, можно сформулировать так: оператор А называется ограниченным, если он переводит любой шар в ограниченное множество.
В силу линейности оператора А это условие можно сформулировать так: оператор А ограничен, если существует С=const , что для любого Е : .
Определение 3. Наименьшее из чисел С, удовлетворяющих этому неравенству, называется нормой оператора А и обозначается .
Теорема 2 [1]. Для любого ограниченного оператора А , действующего из нормированного пространства в нормированное .
3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов
Определение 4. Пусть А и В - два линейных оператора, действующих из линейного топологического пространства Е в пространство Е1. Назовем их суммой А+В оператор С, ставящий в соответствие элементу элемент у=Ах+Вх, .
Можно проверить, что С=А+В - линейный оператор, непрерывный, если А и В непрерывны. Область определения DC оператора С есть пересечение областей определения операторов А и В.
Если Е и Е1 - нормированные пространства, а операторы А и В ограничены, то С тоже ограничен, причем
(2)
Действительно, для любых х , следовательно, выполняется неравенство (2).
Определение 5. Пусть А и В - линейные операторы, причем А действует из Е в Е1, а В действует из Е1 в Е2 . Произведением ВА операторов А и В называется оператор С, ставящий в соответствие элементу элемент из Е2.
Область определения DC оператора С=ВА состоит из тех хDA , для которых АхDB. Ясно , что оператор С линеен. Он непрерывен, если А и В непрерывны.
Если А и В - ограниченные операторы, действующие в нормированных пространствах, то и оператор С=ВА - ограничен, причем
(3)
Действительно, , следовательно, выполняется (3).
Сумма и произведение трех и более операторов определяются последовательно. Обе эти операции ассоциативны.
Произведение оператора А на число к (обозначается кА) определяется как оператор, который элементу х ставит в соответствие элемент кАх.
Совокупность Z(E,E1) всех непрерывных линейных операторов, определенных на всем Е и отображающих Е в Е1 ( где Е и Е1- фиксированные линейные нормированные пространства), образует, по отношению к введенным операциям сложения и умножения на число, линейное пространство. При этом Z(E, E1) - нормированное пространстово (с тем определением нормы оператора, которое было дано выше).
4. Обратный оператор
Пусть А - линейный оператор, действующий из Е в Е1 , и DA область определения, а RA - область значений этого оператора.
Определение 6. Оператор А называется обратимым, если для любого уRA уравнение Ах=у имеет единственное решение.
Если А обратим, то любому элементу уRA можно поставить в соответствие единственный элемент хDA , являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным к А и обозначается А-1.
Теорема 3 [1]. Оператор А-1, обратный линейному оператору А, также линеен.
Доказательство.

Достаточно проверить выполнение равенства

.

Положим Ах11 и Ах22, в силу линейности А имеем

(*)

По определению обратного оператора А-1у11 и А-1у22, умножим оба равенства соответственно на и :

.

С другой стороны из равенства (*) следует , следовательно, .

Теорема доказана.

Теорема 4 [3]. (Теорема Банаха об обратном операторе)

Пусть А - линейный ограниченный оператор, взаимно однозначно отображающий банахово пространство Е на банахово пространство Е1. Тогда обратный оператор А-1 ограничен.

Теорема 5 [3]. Пусть Е - банахово пространство, I - тождественный оператор в Е, а А - такой ограниченный линейный оператор, отображающий Е в себя, что . Тогда оператор (I-A)-1 существует, ограничен и представляется в виде .

Доказательство.

Так как , то ряд сходится. А так как для всех , то ряд также сходится. Пространство Е полно, значит, из сходимости ряда вытекает, что сумма ряда представляет собой ограниченный линейный оператор. Для любого n имеем: , переходя к пределу и учитывая, что , получаем , следовательно .

Теорема доказана.

5. Спектр оператора. Резольвента.
Всюду, где речь идет о спектре оператора, считаем, что оператор действует в комплексном пространстве.
В теории операторов и ее применениях первостепенную роль играет понятие спектра оператора. Рассмотрим это понятие сначала применительно к операторам в конечномерном пространстве.
Пусть А - линейный оператор в n-мерном пространстве Еn . Число называется собственным значением оператора А , если уравнение имеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения - регулярными.
Иначе говоря, есть регулярная точка, если оператор обратим. При этом оператор -1 , как и любой оператор в конечномерном пространстве, ограничен, поэтому в конечномерном пространстве существует две возможности:
уравнение имеет ненулевое решение, т. е. есть собственное значение для А , оператор -1 при этом не существует;
существует ограниченный оператор -1, т.е. есть регулярная точка.
В бесконечномерном пространстве существует третья возможность:
оператор -1 существует, т.е. уравнение имеет лишь нулевое решение, но этот оператор не ограничен.
Введем следующую терминологию. Число мы назовем регулярным для оператора А, действующего в (комплексном) линейном нормированном пространстве Е, если оператор -1 , называемый резольвентой оператора А , определен на всем Е и непрерывен. Совокупность всех остальных значений называется спектром оператора А . Спектру принадлежат все собственные значения оператора А, так как если х=0 при некотором , то -1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, т.е. совокупность тех , для которых -1 существует, но не непрерывен, называется непрерывным спектром. Итак, любое значение является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра - существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.
Теорема 6 [3]. Если А -ограниченный линейный оператор в банаховом пространстве и , то - регулярная точка.
Доказательство.
Так как, очевидно , то . При этот ряд сходится (теорема 4), т.е. оператор имеет ограниченный обратный. Иначе говоря, спектр оператора А содержится в круге радиуса с центром в нуле.
Теорема доказана.
Пример. В пространстве функций, непрерывных на отрезке , рассмотрим оператор А, определяемый формулой Аx(t)=M(t)x(t) , где M(t)- фиксированная непрерывная функция. Возьмем произвольное число , тогда , а .
Спектр рассматриваемого оператора состоит из всех , для которых Если функция M(t)- обращается в нуль при некотором t, заключенном между 0 и 1, то оператор не определен на всем пространстве , так как функция уже не обязана быть непрерывной. Если же функция M(t)- не обращается в нуль на отрезке , то функция непрерывна на этом отрезке, а, следовательно, ограничена: для некоторого при всех . Следовательно, оператор ограничен, а число - регулярное для оператора А. Таким образом, спектр оператора А есть совокупность всех значений функции M(t) на отрезке [0;1], причем собственные значения отсутствуют, т.е. оператор умножения на t представляет собой пример оператора с чисто непрерывным спектром.
Замечания
Любой ограниченный линейный оператор, определенный в комплексном банаховом пространстве, имеющем хоты бы один отличный от нуля элемент, имеет непустой спектр. Существуют операторы, у которых спектр состоит из единственной точки (оператор умножения на число).
Теорема 5 может быть уточнена следующим образом. Пусть (можно доказать, что этот предел существует для любого ограниченного оператора А), тогда спектр оператора А целиком лежит внутри круга радиуса r с центром в нуле. Величина r называется спектральным радиусом оператора А.
Резольвентные операторы и , отвечающие точкам и , перестановочны между собой и удовлетворяют соотношению , которое легко проверить, умножив обе части этого равенства на . Отсюда вытекает, что если - регулярная точка для А, то производная от по при =, т.е. , существует (в смысле сходимости по операторной норме) и равна .
§2. Унитарные операторы. Оператор сдвига
В этом разделе будем рассматривать пространство Н со скалярным произведением, которое является частным случаем нормированного пространства.
6. Оператор сдвига. Спектр оператора сдвига
Определение 7. Ограниченный линейный оператор U в пространстве Н называется изометрическим, если он не изменяет величины скалярного произведения: для любых .
В этом случае, если х=у, то , или . Значит, изометрический оператор сохраняет норму элемента, а норма самого такого оператора, как следует из определения нормы, равна 1 ().
Понятие изометрического оператора можно ввести также для операторов, действующих в нормированном пространстве.
Определение 8. Ограниченный линейный оператор U в нормированном пространстве Е называется изометрическим, если он не изменяет величины нормы: для любых .
Лемма 1. Для того, чтобы линейный оператор U в пространстве Н был изометрическим, необходимо и достаточно, чтобы выполнялось условие: для любых .
Доказательство. Нужно доказать только достаточность. Для этого используем тождество . Его легко проверить, если представить левую часть в виде скалярных произведений: . Так как левая часть не изменится при замене векторов на векторы , то правая тоже не изменится, т. е. .
Определение 9. Оператор U называется унитарным, если он изометрический и имеет обратный опера и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.