На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


дипломная работа Применение методов цифровой обработки сигналов при диагностировании двигателей

Информация:

Тип работы: дипломная работа. Добавлен: 06.06.2012. Сдан: 2011. Страниц: 16. Уникальность по antiplagiat.ru: < 30%

Описание (план):


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное  учреждение
высшего профессионального  образования
Омский  государственный  университет
имени Ф.М. Достоевского 

ФИЗИЧЕСКИЙ  ФАКУЛЬТЕТ 

КАФЕДРА ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ И РАДИОФИЗИКИ 
 
 
 
 

Скрибниченко Антон Викторович 
 
 
 
 
 

ДИПЛОМНАЯ РАБОТА 
 

применение  методов цифровой обработки сигналов при диагностировании двигателей 
 
 
 
 
 

Заведующий  кафедрой:
профессор, д.ф.- м.н.
В.И. Струнин 
 

Научный руководитель:
 инженер-программист
ФГУП  «ОмПО«Иртыш»
В.Н. Самарин 
 

Работу  выполнил:
студент группы ФР-502
А.В. Скрибниченко 
 
 
 
 
 

  г. Омск – 2010
 

Содержание 
 

 


Введение

    Актуальность  работы. В настоящее время цифровая обработка сигналов является ядром множества видов новейших цифровых разработок. Ее используют повсюду, включая радиолокацию, сейсмографию, связь, радиоастрономию, медицинскую электронику. Однако в то же время область применения цифровой обработки сигналов практически не затрагивает диагностику сложных механизмов, а в частности двигателей. 
    Почти все существующие методы диагностирования двигателей являются не автоматизированными и обладают низкой точностью. Приходится прибегать к использованию большого количества приборов и вспомогательной литературы.
    Использование ЦОС сигналов в области диагностики  двигателей позволит: автоматизировать процесс диагностики, что в свою очередь уменьшит время на обнаружение неисправностей в агрегате, позволит с высокой точностью определять процент износа частей двигателя. Кроме всего этого,  результат диагностирования позволяет определить техническое состояние двигателя, не имея глубоких знаний в области его устройства и принципов работы.
    Целью дипломной работы является применение методов цифровой обработки сигналов при диагностирования двигателя.  Диагностирование двигателя заключается  в анализе и обработке цифровых сигналов полученных с датчиков давления, вибрации и индуктивного датчика, определяющего положение коленчатого вала.
    Для достижения цели дипломной работы были поставлены следующие задачи:
      Произвести обзор литературы по цифровой обработке сигналов,  принципам и устройству дизельного двигателя
      Разработать методы диагностики с использованием цифровой обработки сигналов
      Получить цифровые сигналы с датчиков, установленных на исправные и неисправные танковые дизельные  двигатели В-84, В-92
      Провести анализ и поиск способа обработки полученных цифровых сигналов
      Разработать алгоритм обработки цифровых сигналов с датчиков
      Получить результат диагностирования дизельных двигателей В-84, В-92
      Сделать выводы о проделанной работе.
 


Глава 1. Цифровая обработка  сигнала

      Понятие сигнала и его виды
    Сигнал  может быть определен как функция, переносящая информацию о состоянии или поведении физической системы. Сигнал может принимать форму колебаний, зависящих от времени или пространственных координат. Математически сигналы представляются в виде функций одной или более независимых переменных. Обычно при математическом представлении сигнала независимой переменной считают время.
    Независимая переменная в математическом представлении  сигнала может быть как непрерывной, так  и дискретной. Сигналы в непрерывном времени определяются на континууме моментов времени и, следовательно, представляются как функции от непрерывной переменной. Дискретные сигналы (сигналы в дискретном времени) определяются в дискретные моменты времени и представляются последовательностями чисел.
    Вдобавок  к тому, что независимые переменные могут быть непрерывными или дискретными, амплитуда сигнала также может быть как непрерывной, так и дискретной. Цифровые сигналы - это сигналы, у которых дискретны и время, и амплитуда. Сигналы в непрерывном времени и с непрерывным диапазоном амплитуд называют аналоговыми сигналами.
    Чтобы облегчить извлечение информации, сигналы  должны подвергаться обработке. Поэтому  весьма важно развитие техники, а  также самих систем обработки  сигналов. Техника обработки сигналов заключается в преобразовании сигнала в другой сигнал, являющийся более предпочтительным. Например, может понадобиться разделение двух или большего числа сигналов, которые ранее были объединены некоторым образом, выделение некоторой компоненты или параметра сигнала либо оценка одного или нескольких параметров сигнала.
    Дискретные  сигналы могут появляться при  получении выборок из аналоговых сигналов или же они могут порождаться  непосредственно некоторым дискретным во времени процессом. Вне зависимости от происхождения дискретных сигналов цифровые системы обработки таких сигналов обладают рядом полезных  качеств. Они могут быть реализованы с большой гибкостью на универсальных цифровых вычислительных машинах или с помощью цифровой аппаратуры. При необходимости их можно использовать для моделирования аналоговых систем или, что более важно, для преобразований сигнала, которые невозможно осуществить на аналоговой аппаратуре. Поэтому, когда требуется сложная обработка сигналов, часто желательно представить их в цифровом виде.
    Системы обработки сигналов могут классифицироваться так же, как и сами сигналы. Так  системы в непрерывном времени  – это системы, у которых на входе и выходе имеются сигналы  в непрерывном времени, а дискретные системы (системы в дискретном времени)- это системы, у которых на входе и выходе дискретные сигналы.  Точно так же аналоговые системы – это системы с аналоговыми сигналами на входе и выходе, а цифровые системы –системы с цифровыми сигналами на входе и выходе В таком случае цифровая обработка сигналов имеет дело с преобразованиями сигналов, являющимися, дискретными как по амплитуде, так и по времени. [1]
    Подавляющее  большинство  сигналов,  обрабатываемых  современными  техническими системами, так или иначе имеет цифровое представление, которое можно рассматривать с двух точек зрения. Во-первых, значение сигнала  в  данный  конкретный  момент  времени,  являясь  по  сути  непрерывным, может  быть  воспринято  любой  обрабатывающей  системой  как  одно  из  конечного набора значений. Наиболее часто встречающимся случаем подобного цифрового представления является преобразование непрерывного сигнала каким-либо аналогово-цифровым преобразователем. Такое цифровое представление непрерывного по сути значения сигнала принято называть дискретизацией по уровню. Во-вторых, информация  о  сигнале,  зависящем,  например, от  времени, даже  в  том  случае, если  значения  этого  сигнала  дискретизированны  по  уровню,  не  может  быть предоставлена обрабатывающей  системе  в  виде  значений  сигнала  в каждый момент непрерывно изменяющегося времени. Обрабатывающая система может  оперировать  лишь  конечным  набором  значений  сигнала  и  такое  представление непрерывно изменяющегося сигнала принято называть дискретизацией по времени. В большинстве практических применений уровни дискретизации  значений  сигнала  выбираются  равно  отстоящими  друг  от  друга  и расстояние между  ними  называется  интервалом  дискретизации  по  уровню. Аналогично моменты дискретизации сигнала по времени выбираются обычно  равно  отстоящими  друг  от  друга  и  расстояние  между  ними  называется интервалом  дискретизации  по  времени.  Как  правило,  замена  непрерывных значений  сигнала  дискретными  уровнями  может  быть  аналитически  учтена добавлением в обрабатываемый сигнал равномерно распределенного в некотором интервале шума и не приводит к каким-либо неожиданным следствиям. Замена же непрерывно изменяющегося сигнала дискретным набором значений, напротив, приводит к ряду интересных эффектов, которые, собственно,  и  составляют  предмет  изучения  теории  цифровой  обработки  сигналов.
    Рассмотрим  системы,  обрабатывающие  дискретный набор дискретных значений сигнала. Интервал  дискретизации  по  уровню  определяется  разрядностью АЦП  и уменьшается с увеличением разрядности, интервал же дискретизации по  времени определяется частотой  дискретизации АЦП и  уменьшается  с  ее ростом. Изменение сигнала происходит с изменением времени и дискретный набор значений сигнала соответствует разным моментам  времени.  Далее обозначим интервал дискретизации по времени символом ? . Эффекты, связанные с дискретизацией по уровню, обычно  не учитывают, предполагая, что интервал дискретизации по  уровню  достаточно мал, чтобы считать эти эффекты пренебрежимо малыми.
      Определим  дискретный  сигнал  как  не  более  чем  счетный набор  величин,  заданных  в  моменты  времени и принимающих непрерывный ряд значений. Для значения дискретного сигнала в n-ный момент времени введем обозначение (эти значения будем далее называть отсчетами сигнала), а сам сигнал обозначим как . Назовем также конечным сигналом дискретный сигнал, имеющий конечное число отличных  от  нуля  значений  и ограниченным  сигналом дискретный  сигнал, сумма абсолютных  значений отсчетов которого конечна, или, иными словами,  тот сигнал для которого сходящимся  является ряд . Примером дискретного сигнала может служить сигнал  , значения  отсчетов  которого определяются выражением 
    
   (1.1)

    Такой сигнал имеет смысл называть гармоническим  сигналом с амплитудой A и частотой . Частота иногда называется циклической частотой и имеет физический смысл «количество  радиан  в  единицу  времени»  в  отличие  от  обыкновенной  частоты , имеющей смысл «количество периодов в единицу времени». [2]
    Дискретный сигнал является последовательностью чисел, поэтому для анализа его спектра обычнымисредствами необходимо сопоставить этой последовательности некоторую функцию. Традиционным способом такого сопоставления является представление отсчетов в виде дельта-функций с соответствующими множителями и задержками.
Для последовательности отсчетов получится следующий сигнал:
    (1.2)

    Преобразование  Фурье линейно, спектр дельта-функции равен единице, а задержка сигнала во времени приводит к умножению спектра на комплексную экспоненту. Все это позволяет сразу же записать спектр дискретного сигнала:
    
(1.3)

1.2 Дискретное преобразование  Фурье

    Анализ  Фурье закладывает основы многих методов, применяющихся в области  цифровой обработки сигналов. По сути, преобразование Фурье позволяет сопоставить сигналу, заданному во временной области, его эквивалентное представление в частотной области. Наоборот, если известна частотная характеристика сигнала, то обратное преобразование Фурье позволяет определить соответствующий сигнал во временной области. В дополнение к частотному анализу, эти преобразования полезны при проектировании фильтров. Частотная характеристика фильтра может быть получена посредством преобразования Фурье его импульсной реакции. И наоборот, если определена частотная характеристика сигнала, то требуемая импульсная реакция может быть получена с помощью обратного преобразования Фурье над его частотной характеристикой. Цифровые фильтры могут быть созданы на основе их импульсной реакции, поскольку коэффициенты фильтра с конечной импульсной характеристикой (КИХ) идентичны дискретной импульсной реакции фильтра. [3]
    Семейство преобразований Фурье  представлено на Рисунок 1. С течением времени принятые определения получили развитие в зависимости от того, является ли сигнал непрерывно-апериодическим, непрерывно-периодическим дискретно-апериодическим или дискретно-периодическим.
    Единственный  член этого семейства, который имеет  отношение к цифровой обработке  сигналов, – это дискретное преобразование Фурье (ДПФ), которое оперирует дискретной по времени выборкой периодического сигнала во временной области. Для того чтобы быть представленным в виде суммы синусоид, сигнал должен быть периодическим. Но в качестве набора входных данных для ДПФ доступно только конечное число отсчетов (N). Эту дилемму можно разрешить, если мысленно поместить бесконечное число одинаковых групп отсчетов до и после обрабатываемой группы, образуя, таким образом, математическую  периодичность, как показано на Рисунке 1. [4] 

    

Рисунок 1 - Семейство преобразований Фурье  как функция сигнала во временной  области
    Фундаментальное уравнение для получения N-точечного  ДПФ выглядит следующим образом:
  (1.4)

    , где  представляет собой частотный выход ДПФ в k-ой точке спектра, k находится в диапазоне от 0 до N-1, N представляет собой число отсчетов при вычислении ДПФ, представляет собой n-ый отсчет во временной области, также находится в диапазоне от 0 до N-1. [5]
      В общем уравнении  может быть вещественным или комплексным. Стоит обратить внимание, что косинусоидальные и синусоидальные компоненты в уравнении (1.4) могут быть выражены в полярных или прямоугольных координатах, связь между которыми определяется формулой Эйлера:
    
  
(1.5)
    Стоит отметить основные свойства дискретного преобразования Фурье (ДПФ):
    Периодический сигнал может быть разложен на сумму выбранных должным образом косинусоидальных и синусоидальных функций (Жан Батист Жозеф Фурье, 1807).
    ДПФ работает с конечным числом (N) оцифрованных по времени отсчетов x(n). Когда эти группы отсчетов повторяются, они становятся периодическими с точки зрения преобразования.
    Комплексный спектральный выход ДПФ X(k) является результатов свертки входных отсчетов с базисными функциями синуса и косинуса.
На Рисунке 2 можно увидеть области применения ДПФ.

Рисунок 2  - Применение дискретного преобразования Фурье

1.3 Аналогово-цифровое  и цифро-аналоговое  преобразование

    Обобщенная  структура системы цифровой обработки  сигналов приведена на Рисунке – 3. На вход поступает аналоговый сигнал . Его временная дискретизация и квантование по уровню производятся в аналого-цифровом преобразователе (АЦП). Вообще эти два процесса — дискретизация и квантование — являются независимыми друг от друга, но они, как правило, выполняются внутри одной микросхемы. Выходным сигналом АЦП является последовательность чисел, поступающая в цифровой процессор ЦП, выполняющий требуемую обработку. Процессор осуществляет различные математические операции над входными отсчетами; ранее полученные отсчеты и промежуточные результаты могут сохраняться в памяти процессора для использования в последующих вычислениях. Результатом работы процессора является новая последовательность чисел, представляющих собой отсчеты выходного сигнала. Аналоговый выходной сигнал восстанавливается по этой последовательности чисел с помощью цифро-аналогового преобразователя (ЦАП). Напряжение на выходе ЦАП имеет ступенчатую форму (см. Рисунок - 3); при необходимости оно может быть преобразовано в плавно меняющийся выходной сигнал с помощью сглаживающего фильтра Ф.

Рисунок – 3. Структурная схема системы  цифровой обработки сигналов
    Гармонический сигнал может быть адекватно представлен  дискретными отсчетами, если его  частота не превышает половины частоты  дискретизации. Эта частота называется частотой Найквиста и определяется как:
  (1.6)
, где - частота Найквиста, - частота дискретизации, - период.
    Происхождение этого ограничения поясняет Рисунок  – 4 . В зависимости от соотношения между частотой дискретизируемого гармонического сигнала и частотой Найквиста возможны три случая.
    Если частота гармонического сигнала меньше частоты Найквиста, дискретные отсчеты позволяют правильно восстановить аналоговый сигнал (Рисунок – 4 а).
    Если частота гармонического сигнала равна частоте Найквиста, то дискретные отсчеты позволяют восстановить аналоговый гармонический сигнал с той же частотой, но амплитуда и фаза восстановленного сигнала (он показан пунктирной линией) могут быть искажены (Рисунок – 4 б). В худшем случае все дискретные отсчеты синусоиды могут оказаться равными нулю.
    Если частота гармонического сигнала больше частоты Найквиста, восстановленный по дискретным отсчетам аналоговый сигнал (как и в предыдущем случае, он показан пунктирной линией) будет также гармоническим, но с иной частотой (Рисунок – 4 в). Данный эффект носит название появления ложных частот (aliasing).

Рисунок – 4. Дискретизация гармонических  сигналов с разной частотой

1.4 Цифровые фильтры

    Цифровой  фильтр в узком смысле – это  частотно-избирательная цепь, которая обеспечивает селекцию цифровых сигналов по частоте. К таким фильтрам относятся: фильтры нижних частот (ФНЧ), фильтры верхних частот (ФВЧ), полосовые фильтры (ПФ), режекторные фильтры (РФ).
    Как и все цифровые системы, цифровые фильтры делятся на два обширных класса: нерекурсивные (КИХ) и рекурсивные (БИХ).  [6]
Фильтр  с конечной импульсной характеристикой (КИХ-фильтр) — один из видов электронных  фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Такой фильтр называют ещё нерекурсивным из-за отсутствия обратной связи. Знаменатель передаточной функции такого фильтра — некая константа. Уравнение фильтрации такого фильтра имеет вид:
      (1.7)

    Фильтр  с бесконечной импульсной характеристикой (рекурсивный фильтр, БИХ-фильтр) —  электронный фильтр, использующий один или более своих выходов в  качестве входа, то есть образует обратную связь. Основным свойством таких фильтров является то, что их импульсная переходная характеристика имеет бесконечную длину во временной области, а передаточная функция имеет дробно-рациональный вид. Такие фильтры могут быть как аналоговыми, так и цифровыми. [7]
    Различают два вида реализации цифрового фильтра: аппаратный и программный. Аппаратные цифровые фильтры реализуются на элементах интегральных схем, тогда как программные реализуются с помощью программ, выполняемых процессором или микроконтроллером. Преимуществом программных фильтров перед аппаратными является лёгкость воплощения, настройки и изменения, а также то, что в себестоимость такого фильтра входит только труд программиста. Недостаток — низкая скорость, зависящая от быстродействия процессора, а также трудная реализуемость цифровых фильтров высокого порядка. [8]
    Рассмотрев, принципы дискретной фильтрации и познакомившись с дискретным преобразованием Фурье, можно заметить, что формулы, описывающие  эти два  процесса, весьма схожи  — в обоих случаях они представляют собой линейную комбинацию отсчетов входного сигнала. Это говорит о том, что ДПФ можно трактовать как обработку сигнала фильтром с соответствующей импульсной характеристикой.  Эту импульсную характеристику можно получить, если заметить, что , при целочисленном и с учетом этого записать формулу прямого ДПФ (1.4) в виде:
   (1.8)

Преобразованная таким способом формула ДПФ представляет собой дискретную свертку, то есть N-й  отсчет результата обработки входного сигнала фильтром, импульсная характеристика которого равна:
  (1.9)

Разумеется, импульсная характеристика для каждого  частотного отсчета ДПФ  своя; чтобы  подчеркнуть это, в ее обозначении  использован индекс n.
Определим частотную характеристику такого фильтра, для этого получим функцию  передачи:
  (1.10)

Далее для расчета частотной характеристики используем подстановку  .
    Таким образом, АЧХ такого фильтра после некоторых тригонометрических преобразований примет следующий вид:
  (1.11)

, где  [5]
    Сравнивая реализацию и использование цифровых и аналоговых фильтров можно выявить следующие преимущества первых:
    Высокая точность (точность аналоговых фильтров ограничена допусками на элементы).
    В отличие от аналогового фильтра передаточная функция не зависит от дрейфа характеристик элементов.
    Гибкость настройки, лёгкость изменения.
    Компактность — аналоговый фильтр на очень низкую частоту (например, доли герца) потребовал бы чрезвычайно громоздких конденсаторов или индуктивностей.
    В свою очередь можно обозначить и следующие недостатки:
    Трудность работы с высокочастотными сигналами. Полоса частот ограничена частотой Найквиста, равной половине частоты дискретизации сигнала. Поэтому для высокочастотных сигналов применяют аналоговые фильтры, либо, если на высоких частотах нет полезного сигнала, сначала подавляют высокочастотные составляющие с помощью аналогового фильтра, затем обрабатывают сигнал цифровым фильтром.
    Трудность работы в реальном времени — вычисления должны быть завершены в течение периода дискретизации.
    Для большой точности и высокой скорости обработки сигналов требуется не только мощный процессор, но и дополнительное, возможно дорогостоящее, аппаратное обеспечение в виде высокоточных и быстрых ЦАП и АЦП.
 


Глава 2. Цифровые методы диагностирования двигателя

2.1 Основные принципы  и особенности  работы дизельных  двигателей

    Дизельный двигатель — поршневой двигатель внутреннего сгорания, работающий по принципу воспламенения топлива от сжатия. Основное отличие дизельного двигателя от бензинового заключается в способе подачи топливо-воздушной смеси в цилиндр и способе её воспламенения. В бензиновом карбюраторном двигателе топливо смешивается с всасываемым воздухом до попадания в цилиндр, получаемая смесь поджигается в необходимый момент свечой зажигания. На всех режимах, за исключением режима полностью открытой дроссельной заслонки, дроссельная заслонка ограничивает воздушный поток, и наполнение цилиндров происходит меньшим количеством топливо-воздушной смеси, но с большим содержанием топлива («богатой смесью»). [7]
    В дизельном двигателе воздух подается в цилиндр отдельно от топлива  и затем сжимается. Из-за высокой  степени сжатия (от 14:1 до 24:1), воздух нагревается до температуры самовоспламенения дизельного топлива (800—900°С). Топливо впрыскивается в камеры сгорания форсунками под большим давлением (от 10 до 220 МПа) с высокой скоростью (за несколько миллисекунд) и воспламеняется с малой задержкой. Свечи у дизеля тоже могут быть, но они являются свечами накаливания и разогревают воздух в камере сгорания, чтобы облегчить запуск. Таким образом, наиболее распространенным определением дизельного двигателя является следующее: дизельный двигатель - это поршневой двигатель внутреннего сгорания с воспламенением от сжатия.
    Дизельный двигатель использует в своей  работе термодинамический цикл с  изохорно-изобарным подводом теплоты (цикл Тринклера-Сабатэ), благодаря  очень высокой степени сжатия они отличаются большим КПД (до 50 %) по сравнению с бензиновыми двигателями.
    Рассмотрим  рабочий цикл четырехтактного дизельный  двигатель внутреннего сгорания (ДДВС). При первом такте (такт впуска, поршень идет вниз) свежая порция воздуха  втягивается в цилиндр через открытый впускной клапан.
    При втором такте (такт сжатия, поршень  идет вверх) впускной и выпускной  клапаны закрыты, и воздух сжимается  в объёме примерно в 17 раз (от 14:1 до 24:1), т. е. объём становится меньше в 17 раз  по сравнению с общим объёмом цилиндра, и воздух становится очень горячим.
    Непосредственно перед началом третьего такта (такт рабочего хода, поршень идет вниз) топливо  впрыскивается в камеру сгорания через распылитель форсунки. При  впрыске топливо распыляется  на мелкие частицы, которые равномерно перемешиваются со сжатым воздухом для создания самовоспламеняющейся смеси. Энергия высвобождается при сгорании, когда поршень начинает свое движение в такте рабочего хода. Впрыск продолжается, что вызывает поддержание постоянного давления сгораемого топлива на поршень.
    Выпускной клапан открывается, когда начинается четвёртый такт (такт выпуска, поршень  идет вверх), и выхлопные газы проходят через выпускной клапан.
    В зависимости от конструкции камеры сгорания существует несколько типов  дизельных двигателей:
    Дизель  с неразделённой камерой («дизель  с непосредственным впрыском»): камера сгорания выполнена в поршне, а  топливо впрыскивается в надпоршневое пространство. Главное достоинство  – минимальный расход топлива. Недостаток — повышенный шум. В настоящее время ведутся интенсивные работы по устранению указанного недостатка.
    Дизель  с разделённой камерой: топливо  подаётся в дополнительную камеру. В большинстве дизелей такая  камера (она называется вихревой) связана  с цилиндром специальным каналом  так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался. Это способствует хорошему перемешиванию впрыскиваемого топлива и воздуха и самовоспламенению смеси. Такая схема считалась оптимальной и широко использовалась. Однако вследствие худшей экономичности в последние два десятилетия идет активное вытеснение таких дизелей двигателями с непосредственным впрыском топлива. [9]
    Значимым  различием дизельного ДВС от бензинового  ДВС является коэффициент полезного  действия. Бензиновый двигатель является довольно неэффективным и способен преобразовывать всего лишь около 20-30 % энергии топлива в полезную работу. Стандартный дизельный двигатель, однако, обычно имеет коэффициент полезного действия в 30-40 %, дизели с турбонаддувом и промежуточным охлаждением до 50 %. [6]

2.1.1 Воздушная система  запуска двигателя

    Конструкция системы запуска двигателя  представляет собой совокупность  двух взаимозаменяемых подсистем. Это система запуска  двигателя при помощи аккумуляторных батарей и система запуска  двигателя сжатым воздухом. При нормально прогретом двигателе стартер должен проворачивать коленчатый вал со скоростью не менее 200-250 об/мин. А это возможно при ёмкости аккумуляторных батарей не менее 75% номинальной. При эксплуатации аккумуляторных батарей в зимних условиях и при неправильной их эксплуатации ёмкость может опускаться менее номинальной. В этом случаи применяется система запуска сжатым воздухом, как дублирующая система. [10]
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.