На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Внешняя память ПК

Информация:

Тип работы: контрольная работа. Добавлен: 06.06.2012. Сдан: 2011. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


      Все персональные компьютеры используют три  вида памяти: оперативную, внутреннюю и внешнюю (различные накопители). Оперативная память предназначена  для хранения переменной информации, так как она допускает изменение  своего содержимого в ходе выполнения микропроцессором соответствующих операций. Поскольку в любой момент времени доступ может осуществляться к произвольно выбранной ячейке, то этот вид памяти называют также памятью с произвольной выборкой - RAM (Random Access Memory). Все программы, в том числе и игровые, выполняются именно в оперативной памяти. Внешние накопители имеют собственный корпус и источник питания, что экономит пространство внутри корпуса компьютера и уменьшает нагрузку на его блок питания. Встраиваемые накопители крепятся в специальных монтажных отсеках (drive bays), что позволяет создавать компактные системы, которые совмещают в системном блоке все необходимые устройства. Сам накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители со сменными и несменными носителями.
      Внутренняя  память обычно содержит такую информацию, которая не должна меняться в течение  длительного времени. Внутренняя память имеет собственное название - ROM (Read Only Memory), которое указывает на то, что ею обеспечиваются только режимы считывания и хранения.
      А внешняя память используется для  временного хранения данных и программ при выполнении последних. Внешняя память представлена в основном магнитными и оптическими носителями. Магнитные носители делятся на магнитные ленты (стримеры), которые используются для хранения архивов и нашли неширокое применение, и магнитные диски.
      Накопители  информации представляют собой гамму  запоминающих устройств с различным  принципом действия физическими  и технически эксплуатационными  характеристиками. Основным свойством и назначением накопителей информации является хранение и воспроизведение информации. Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. В связи с видом и техническим исполнением носителя информации различают: электронные, дисковые (магнитные, оптические, магнитооптические), ленточные, перфорационные и другие устройства.
      Дисковые  носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости круглого носителя. Ленточные носители имеют продольно расположенные поля – дорожки. Запись производится, как правило, в цифровом коде.
      Дисковые  устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую
      Дисковые  устройства как накопители информации принято делить в связи с их техническими свойствами и характером исполнения, а также принципами записи:
                          1. магнитные дисковые накопители
                          2. оптические дисковые накопители
                          3. магнитооптические дисковые накопители
      Рассмотрим организацию внешней памяти на примере магнитных дисков.
      Магнитные диски являются элементами устройств чтения-записи информации – дисководов. Сам магнитный диск – это пластиковый (для гибких или флоппи-дисков) или алюминиевый либо керамический (для жестких дисков) круг с магниточувствительным покрытием. В случае жесткого диска таких кругов может быть несколько, и все они в центре посажены на один стержень. Для гибкого диска такой круг один, при помещении в дисковод он фиксируется в центре. Во время работы диск раскручивается. Схема дисковода показана на рисунке: 

      
      Головки чтения-записи могут синхронно перемещаться в горизонтальном и вертикальном направлении (это показано стрелками), что позволяет им приблизиться к любой точке поверхности диска. Каждая точка поверхности рассматривается как отдельный бит внешней памяти.
      Гибкие  диски (Floppy Disk – FD) Гибкие дисковые устройства состоят из устройства чтения/записи – дисковода и непосредственного носителя – дискеты.
       Дискета представляет собой слой магнито-мягкого  материала, нанесенный на специальную подложку, выполненную из полимерного немагнитного пластического материала, степень жесткости которого может быть различна в зависимости от реализации. Носитель помещается в бумажный, пластмассовый или                                               другой кожух-корпус. В настоящее время, используются только двусторонние носители, следовательно покрытие нанесено с обеих сторон дискеты и чтение/запись  производится с обеих сторон. Дискеты различного диаметра, как правило, имеют разные оформления корпуса. Так гибкие диски диаметром 5.25 дюйма помещаются в бумажный кожух, а 3.14 – в пластмассовый. Дискета в кожухе свободно вращается приводом устройства – дисковода через окно центрального захвата, что обеспечивает прохождение площади дорожки под устройством чтения/записи называемом головкой чтения/записи.
      На  кожухе дискеты имеются, соответственно, отверстия: центрального захвата(3), отверстие  позиционирования головки(1),отверстие  физической защиты от записи (5, 8), направляющие отверстия и пазы (2), отверстия автоопределения типа магнитного  покрытия (9), отверстие определения полного оборота носителя (4). Отверстие для позиционирования магнитных головок чтения/ записи у 3.14 дюймовых носителей  закрыто  металлической задвижкой (7), а отверстие для центрального  захвата и вращения на шпинделе привода вращения диска, в отличие от носителя диаметром 5.25 дюймов, находится только с нижней стороны дискеты.. Каждый сменный дисковый магнитный носитель перед использованием в какой-либо операционной системе необходимо подготовить к приему данных. Такая операция называется форматированием. Форматирование дискет производится при помощи специального программного обеспечения – программ форматирования дисков и, как правило, специфично для каждой операционной системы.
            В зависимости от типа носителя, в соответствии с качеством магнитного покрытия, возможностями операционной системы и устройств дискеты можно форматировать для записи на них информации различного максимального объема, что достигается заданием таких параметров форматирования как число дорожек и секторов. Как правило, производителями дискет указывается параметр называемый числом точек на дюйм носителя – Track per inch (TPI).
      Рассмотрим подробнее структуру поверхности диска (или дисков). Элементы физической структуры следующие:
      дорожка – концентрическая окружность, по которой движутся головки чтения-записи при размещении или поиске данных. Дорожки нумеруются, начиная с нуля. Нулевой номер имеет самая внешняя дорожка на диске;
      секторы – блоки, в которых размещаются данные на дорожке при записи. Нумеруются, начиная с единицы. Помимо пользовательской информации (самих данных), сектора содержат служебную информацию, например, собственный номер. Сектора являются минимальными адресуемыми элементами данных для диска;
      стороны диска. Нумеруются, начиная с нуля. Для винчестера, расположенного вертикально, нулевой номер имеет самая верхняя сторона, для гибкого диска нулевой номер у «лицевой» стороны дискеты;
      цилиндр – совокупность дорожек с одинаковыми номерами на разных сторонах диска. Номера цилиндров совпадают с номерами дорожек;
      кластер – совокупность секторов, имеющих смежные номера. Может состоять из одного сектора (для дискет) или нескольких (для винчестера). Является минимальным адресуемым элементом данных для операционной системы. Кластеры используются операционной системой для добавления данных к файлу: добавление очередной «порции» данных к файлу выполняется в объеме кластера независимо от того, что реальный объем добавляемых меньше объема кластера. Это приводит к нерациональному расходованию внешней памяти. Поэтому не рекомендуется хранить на диске большое количество маленьких файлов: они имеют много пустых «хвостов».
      Дискретное пространство диска имеет, в свою очередь, следующую структуру (она описана в порядке возрастания номеров сторон, дорожек и секторов):
      таблица разделов PT (Partition Table). Состоит из четырех элементов, описывающих разделы диска, причем операционные системы используют только первые два элемента. Описание раздела диска содержит данные о первых и последних головках чтения-записи, дорожках, секторах раздела, общем количестве секторов в разделе, типе файловой системы и признак того, что раздел является загрузочным;
      главная загрузочная запись MBR (Master Boot Record). Содержит код процессора, необходимый для дальнейшей загрузки операционной системы;
      загрузочная запись операционной системы BR (Boot Record). Содержит следующую информацию: программу загрузки операционной системы, размер кластера, количество копий FAT, количество файлов в корневом каталоге Root, размер FAT и некоторую другую информацию;
      таблица размещения файлов FAT (File Allocation Table) и ее копии. Содержит полную карту принадлежности кластеров файлам и используется операционными системами для хранения сведений о размещении файлов на диске и о «плохих» (bad) кластерах. В силу важности FAT она дублируется несколько раз;
      корневой каталог Root. Это таблица, в которой каждая запись соответствует файлу или подкаталогу, подчиненному корневому каталогу диска, и имеет структуру:
    имя файла или подкаталога;
    тип файла,
    атрибуты, в которых определяются следующие параметры файла или подкаталога: предназначенность только для чтения, скрытость, системность, маркер принадлежности данной записи метке тома, признак принадлежности данной записи подкаталогу, а не файлу,  архивность;
    время создания;
    дата создания;
    номер начального кластера файла или подкаталога;
    размер файла.
      Следует подчеркнуть, что записи для файлов и подкаталогов идентичны за исключением двух характеристик: в поле атрибутов выставлен признак подкаталога и в поле размеров выставлен ноль.
      область размещения файлов FA (File Area). Содержит файлы и подкаталоги, которые описаны в Root. Следует иметь в виду, что при размещении файлов на диске операционная система выбирает для этого первые попавшие свободные кластеры. Поэтому в результате файл физически "разорван" на множество "кусков", что увеличивает время его сборки впоследствии. Такое явление называется фрагментацией файла. Для устранения фрагментации выполняют дефрагментацию файла, когда он по возможности "собирается" в единое целое, что позволяет оптимизировать работу с внешней памятью.
      Взаимосвязь областей Root, FAT, FA при поиске файла или каталога по его имени, указанному, например, в команде MS DOS, показана ниже.
      Пусть файл с именем ABC.TXT расположен в области FA в тех кластерах, которые выделены серым цветом (их номера показаны ниже): 

                                                               
      10       11       12       13       14       15       16       17
 
      Остальные кластеры свободны. Тогда в FAT в записях с номерами 10 – 17 появятся  данные, показанные в таблице: 

      № записей FAT       Содержимое  записи FAT
      10       12
      11        
      12       15
      13        
      14        
      15       17
      16        
      17       EOF
 
      Каждая запись FAT, как видно из таблицы, соответствует одному кластеру и либо содержит номер следующей записи в FAT, соответствующей кластеру  с продолжением файла, либо пуста (для незанятых кластеров).  Строго говоря, для свободных или «плохих» кластеров записи в FAT заполняются специальными соответствующими кодами. 
 

      В области Root имеется запись с описанием файла ABC.TXT следующей структуры: 

      Имя файла       Тип файла       ...       № первого кластера       ...
      ABC       TXT               10        
      Тогда при упоминании имени файла в команде операционная система выполняет следующие действия:
    обращается в область Root, адрес которой фиксирован и известен, и находит там нужную запись (напомним, что операционные системы требуют уникальности имен файлов и подкаталогов, содержащихся в одной директории). Выбирает из этой записи номер первого кластера;
    обращается к FAT, адрес которой фиксирован и известен, и по номеру первого кластера находит соответствующую запись FAT;
    в  найденной записи FAT выбирает содержимое записи – это номер следующей записи FAT с описанием продолжения (или окончания) файла;
    если очередная запись FAT содержит EOF, “сборка” файла закончена; иначе   повторяется предыдущий шаг.
      В настоящий момент, технологии хранения и чтения/записи информации на обычную дискету дают невысокие скорости обмена и позволяют добиться плотности записи для объема информации до 2 мегабайт. Такие объемы считаются малыми и поэтому дискеты используют лишь как средство транспортировки и архивного хранения небольших объемов информации. Надежность дискет, также, оставляет желать лучшего. Они подвержены вредным воздействиям температурных, гидрометрических, магнитных, механических и др. факторов. Поэтому, с дискетами следует обращаться аккуратно.
      Во  избежание потери данных или повреждения  носителя недопустимо: хранение дискет в местах подверженных воздействию  магнитных полей, влаги, сильных  механических воздействий, обильного  количества пыли, резких температурных  перепадов. Необходимо осторожно вставлять и извлекать дискету из дисковода только после того, как индикатор обращения к диску погаснет. В зависимости от интенсивности использования дискеты, ее необходимо проверять на предмет целостности и правильности логической и физической структуры при помощи специального программного обеспечения с различной частотой, но не реже одного раза в два месяца. Также, необходимо производить чистку головок чтения/записи дисковода при помощи специальной чистящей дискеты и очистителя. Срок службы носителя зависит не только от способа его эксплуатации, но и от его исходного качества. Дискеты высокого качества известных крупных производителей способны форматироваться на максимальные объемы и выдерживают при эксплуатации до 70 млн. проходов головки чтения/записи по дорожке, что, практически, означает срок интенсивной эксплуатации до 20 лет. Дискеты безымянных производителей и просто плохого качества, как правило, подвержены таким вредным процессам как высыпанию частичек магнитного покрытия и размагничиваемости.
      В 1972 г. появляются первые оптические лазерные диски. Они продемонстрировали большие возможности по  хранению  информации. Объемы хранимой на них информации позволяли использовать  их  для хранения огромных массивов данных (таких как базы данных, энциклопедии, коллекции видео и аудио данных). Легкая замена этих дисков позволяла, «носить с собой» все материалы требуемые для работы, в любом объеме.  Оптические  диски  имели  очень  высокую надежность и долговечность, что  позволяло  использовать  их  для архивного хранения информации.
      Но  трудоемкая процедура  записи и невозможность  перезаписи сильно ограничивала применение оптических дисков, как  устройства для  каждого компьютера.
      Наиболее  жизнеспособными оптическими дисками, обладающие свойствами перезаписи, на сегодняшний день являются  магнитооптические  (МО) диски. Впервые МО диски появились в 1988 году и соединили в  себе компактность гибких дисков и накопителя Bernoulli  Box, скорость среднего жесткого диска, надежность стандартного Компакт Диска и емкость сравнимую с DAT лентами. Но широкому  распространению  МО дисков  мешает  сравнительно дорогая  стоимость и конкуренция современных жестких дисков. По сравнению с современными жесткими дисками, они более медленны и уступают им  по  максимальным объемам хранимой информации. Это делает невозможным применение МО дисков вместо традиционных винчестеров. При этом МО  диски  имеют большие перспективы как  вторичные  накопители,  применяемые  для резервного хранения информации.
      МО  накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера.
      В процессе записи на МО диск лазерный луч  нагревает определенные точки на диски, и под  воздействием  температуры сопротивляемость изменению полярности, для нагретой точки, резко падает, что позволяет магнитному полю изменить полярность  точки.
      После окончания нагрева сопротивляемость снова  увеличивается  но полярность нагретой точки остается  в  соответствии с магнитным полем  примененным  к  ней  в  момент  нагрева. 
      В процессе чтения  с  МО  диска  используется  эффект  Керра, заключающийся  в  изменении  плоскости  поляризации   отраженного лазерного луча, в  зависимости  от  направления  магнитного  поля отражающего  элемента.  Отражающим  элементом  в  данном случае является намагниченная при записи точка на  поверхности  диска, соответствующая одному биту хранимой  информации.  При  считывании используется лазерный луч небольшой интенсивности, не  приводящий к нагреву считываемого  участка,  таким  образом,  при считывании хранимая информация не разрушается.
      Такой способ в отличие от обычного применяемого в оптических дисках не деформирует поверхность диска  и  позволяет  повторную запись без дополнительного оборудования. Этот способ также  имеет преимущество  перед  традиционной  магнитной  записью   в   плане надежности. Так как  перемагничивание  участков диска возможно только под действием высокой температуры, то вероятность случайного перемагничивания очень низкая, в отличие от традиционной магнитной записи, к потери  которой могут привести случайные магнитные поля.

      Накопители типа Bernoulli

      Этот  накопитель является, по-видимому, самым  уникальным. Вместо того чтобы идти  по пути применения жесткого магнитного диска, который должен иметь защиту против неблагоприятных внешних факторов, в том числе загрязнений и вибраций, инженеры компании Iomega разработали на основе принципов динамики потоков, впервые сформулированных швейцарским математиков XVIII века Даниэлем Бернулли, оригинальный принцип действия системы «гибкий магнитный диск-головка чтения/записи».
      Головка чтения/записи, спроектированная с  учетом требований аэродинамики, «плавает» над поверхностью гибкого диска Бернулли. Воздушные потоки, возникающие вследствие вращения диска с высокой скоростью, вызывает изгиб части поверхности диска, находящейся под головкой чтения/записи, в направлении к последней. Однако диск не соприкасается с головкой, между ними остается небольшой достаточно стабильный зазор, который обеспечивается потоками воздуха,  уравнения для описания которых впервые предложил Бернулли.
      Какое-либо изменение нормальных условий работы накопителя Бернулли (например, из-за удара или появления пятнышка загрязнения на поверхности диска ) вызывается нарушение эффекта Бернулли и приводит к тому, что диск отходит от головки, вместо того чтобы соприкоснуться с ней (как это бы произошло на обычном винчестере). Благодаря этому исключается возможность отказов накопителя, поскольку вращающийся диск практически не может соприкоснуться с головкой. Поэтому диски Бернулли самые  удароустойчивые.
      Сам накопитель Бернулли, хотя он является гибким и по виду похож на обычную дискету, действительности может эксплуатироваться до пяти лет в режиме считывания/записи - т.е. характеризуется в 20 раз большей долговечностью, чем дискета, - согласно данным поставщика. Носитель с бариево-ферритовым покрытием не только позволяет записывать данные с втрое более высокой плотностью чем носитель с обычных винчестерских накопителей или НГМД, но и отличается существенно большей стойкостью к износу, чем у обычных дискет.
      Накопители  Бернулли по скорости доступа не уступают ряду широко используемых накопителей на жестких дисках со средним быстродействием. Так, например, Bernoulli230 имеет емкость одной кассеты 230 Mb, строенный кэш 256 Кб, интерфейс SCSI-2 или IDE и время доступа 12 мсек.
      Музыкальные оптические компакт-диски пришли на смену виниловым в 1982 году - примерно в то же время, когда появились первые персональные компьютеры фирмы IBM. Эти устройства явились результатом плодотворного сотрудничества двух гигантов электронной промышленности - японской фирмы Sony и голландской Philips. Строго определенная емкость компакт-дисков связана с такой интересной историей.
      Исполнительный  директор фирмы Sony Акио Морита решил, что компакт-диски должны отвечать запросам исключительно любителей классической музыки - не более и не менее. После того, как группа разработчиков провела опрос, выяснилось, что самым популярным классическим произведением в Японии в те времена была 9-я симфония Бетховена, которая длилась 72-73 минуты. Поэтому было решено, что компакт-диск должен быть рассчитан именно на 74 минуты звучания, а точнее, на 74 минуты и 33 секунды. Так родился стандарт, известный как “Красная Книга” (Red Book). Когда 74 минуты пересчитали в килобайты, получилось 640 Mb.
      Специалисты же Philips определили минимальные требования к качеству записи звука и регламентировали, например, такие характеристики аудио компакт-дисков, как их размер, метод кодирования данных и использование единой спиральной дорожки.
      Две вышеназванные фирмы сыграли  также ведущую роль при разработке первой спецификации цифровых компакт-дисков - так называемой “Желтой Книги” (Yellow Book), или просто CD-ROM. Она послужила основой для создания компакт-дисков с комплексным представлением информации, то есть способных хранить не только звуковые, но и текстовые и графические данные (CD-Digital Audio, CD-DA). При этом привод, читая заголовок диска, сам определял его тип - аудио- или цифровые данные. В этом формате, однако, не регламентировались логические и файловые форматы компакт-дисков, поскольку решение данных вопросов было полностью отдано на откуп фирмам-производителям. Это, в частности, означало, что компакт-диск, соответствующий требованиям “Желтой Книги”, мог работать только на конкретной модели накопителя. Такое положение дел, особенно в связи с большим коммерческим успехом компакт-дисков, разумеется, не могло удовлетворить производителей подобных устройств. В общих интересах необходимо было срочно найти компромисс.
      Именно  поэтому вторым стандартом де-факто  для цифровых компакт-дисков стала  спецификация HSG (High Sierra Group), или просто High Sierra. Этот документ носил, вообще говоря, рекомендательный характер и был предложен основными производителями цифровых компакт-дисков с целью обеспечить  хотя бы некоторую совместимость. Данная спецификация определяла уже как логический, так и файловый форматы компакт-дисков.
      Созданная спецификация оказалась настолько  привлекательной, что стандарт ISO-9660 (1988 год) для цифровых компакт-дисков, в принципе совпадал с основными положениями HSG. Заметим, что все компакт-диски, соответствующие требованиям стандарта ISO-9660, который определяет их логический и файловый форматы, являются совместимыми друг с другом. В частности этот документ определяет, каким образом найти на компакт-диске его содержимое (Volume Table Of Contents, VTOC). Базовый формат, предложенный в HSG-спецификации, во многом напоминал формат флоппи-диска. Как известно, системная дорожка (трек 0) любой дискеты не только идентифицирует сам флоппи-диск (его плотность, тип используемой ОС), но и хранит информацию о том, как он организован по директориям, файлам и поддиректориям. Инициирующая дорожка данных на компакт-диске начинается со служебной области, необходимой для синхронизации между приводом и диском. Далее расположена системная область, которая содержит сведения о структурировании диска. В системной области находятся также директории данного тома с указателями или адресами других областей диска. Существенное различие между структурой компакт-диска и, например, дискетой заключается в том, что на CD системная область содержит прямой адрес файлов в поддиректориях, что должно облегчить их поиск.
      Международный стандарт ISO-9660 описывает файловую систему на CD-ROM. ISO-9660 первого уровня напоминает файловую систему MS-DOS: имена файлов могут содержать до 8-ми символов, расширение имени файла (состоящие из 3-х символов) отделяется от имени файла точкой. Имена файлов не могут содержать специальных символов (“~”, “-”, “+”, “=”). При именовании файлов используются символы только верхнего регистра, цифры и символ “_”. Имена каталогов не могут иметь расширений. Каждый файл имеет версию; номер версия отделяется от расширения символом “;”. Каталоги могут иметь вложенности 8. Стандарт ISO-9660 второго уровня позволяет использовать в именах файлов до 32 символов, накладывая описанные выше ограничения. Диски, созданные с применением такого стандарта, не могут использоваться в ряде ОС, в том числе и MS-DOS.
      Спецификация  CD-I (Interactive) была предложена в 1988 году. Этот стандарт определял использование дискового плеера без подключения его к компьютеру. Устройством отображения в данном случае должен был стать, например, обыкновенный телевизор. Разумеется, что использовался и его стандартный звуковой канал. Кроме этого, CD-I предлагала несколько уровней качества воспроизведения аудио- и графической информации. Данная спецификация изложена в “Зеленой Книге” (Green Book). Заметим, что так называемые CD-I-Ready-диски являются некой смесью между аудио-CD (Red Book) и мультимедиа-диском (Green Book). Таким образом, на аудиоплеере прослушивается только звуковая информация, а на устройстве CD-I воспроизводится вся вместе.
      Стандарт  CD-ROM XA был создан в 1990 году усилиями фирм Microsoft, Philips и Sony как “мост” между CD-ROM и CD-I. Таким образом, ХА-диск мог воспроизводиться на CD-I-плеере или приводе, отвечающем стандарту Yellow Book (при использовании специального программного обеспечения). Формат спецификации CD-ROM XA совместим сверху вниз с форматами, рекомендованными High Sierra и ISO-9660. Однако в новой спецификации заложено уже гораздо больше возможностей. Во-первых, формат ХА позволяет осуществлять много сеансовую запись на диск. Во-вторых, основной отличительной особенностью приводов CD-ROM ХА является так называемая техника чередования (interleaving). Спецификация ХА позволяет одновременно хранить на диске графические, текстовые и звуковые данные, причем графика может включать как стандартные картинки и анимацию, так и полнообъемное видео  (full-motion).
      Другой  отличительной особенностью спецификации ХА является сжатие звуковых данных, что позволяет хранить на одном диске до нескольких часов аудиоинформации вместо обычных 74-х минут. Кстати, именно из-за сжатия минимальная скорость передачи информации не должна быть меньше 150 Кбайт/с.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.