На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 13.03.2003. Сдан: 2003. Уникальность по antiplagiat.ru: --.

Описание (план):


47

Санкт-Петербургский государственный университет

Факультет прикладной математики - процессов управления

Кафедра математического моделирования

энергетических систем

Карпова

Наталия

Анатольевна

ОРТОГОНАЛЬНЫЕ ПОЛИНОМЫ И КРИВЫЕ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ


Зав. Кафедрой,
профессор, доктор физ.-мат. наук Захаров В. В.
Научный руководитель,
доцент, кандидат физ.-мат. наук Свиркин М. В.
Рецензент,
доцент, кандидат физ.-мат. наук Корников В. В.

Санкт Петербург

2003

Оглавление.

Введение…………………………………………………………………………..3

Глава 1. Система кривых Пирсона.

§ 1. Дифференциальное уравнение Пирсона…………………….………5

§ 2. Основные типы кривых Пирсона…….……………………………...8

§ 3. Переходные типы кривых Пирсона…………………………………17

Глава 2. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей.
§ 1. Получение ортогональных полиномов по способу Чебышева…...23
§ 2. Обобщение метода Грамма - Шарлье………………...…………….33
§ 3. Весовые функции и кривые распределения вероятностей…….….36
Глава 3. Примеры нахождения кривых распределения вероятностей и программное обеспечение.
§ 1. Примеры нахождения кривых распределения вероятностей……..40
§ 2. Алгоритм вычислений...................................……...……...………...46
Заключение……………………………………………………………………..47
Литература……………………………………………………………………...48
Введение.
Математическая статистика является наукой, которая изучает соотношения, столь глубоко проникающие в суть вещей, что их можно встретить при самых различных обстоятельствах. Результаты исследований, полученные с помощью аппарата математической статистики, используются в самых различных областях науки и техники, таких как биология, медицина, анатомия, геология, экология, экономика, и т.д.
Данная дипломная работа посвящена рассмотрению двух основных задач математической статистики:
1. получению кривой распределения вероятностей по имеющейся выборке;
2. нахождению зависимости между двумя случайными величинами, заданными своими выборками.
Для решения первой задачи используются различные методы. В данной работе рассмотрен метод Карла Пирсона, представителя английской школы статистики. Им было получено дифференциальное уравнение
,
а так же введен критерий ж (каппа Пирсона), с помощью которого Пирсон классифицировал решения этого дифференциального уравнения и представил их в виде двенадцати типов.
Позже в своих теоретических исследованиях Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения данной задачи используется метод Пирсона нахождения кривой распределения.
Для решения второй задачи используется метод П.Л. Чебышева, создателя Санкт - Петербургской математической школы. В статистике имя знаменитого русского математика П. Л. Чебышева (1821-1894) известно главным образом по так называемому неравенству Чебышева, которое он предложил для распределения вероятностей, и которое имеет силу для любого статистического распределения численностей.
Однако за последнее время в статистике всё большее значение приобретают ортогональные полиномы Чебышева, которые имеют особое значение при определении множественной и криволинейной регрессии и при вычислении коэффициентов обобщённой функции нормального распределения вероятностей.
Чебышев предложил общую интерполяционную формулу, при которой возможно интерполирование в самых разнообразных случаях. Эта интерполяционная формула удовлетворяет условиям метода наименьших квадратов и выражена при помощи его ортогональных полиномов. Общая интерполяционная формула, или, иначе ряд Чебышева, предложен Чебышевым в 1855 году. Она имеет вид
.
Таким образом в дипломной работе рассматриваются два метода:
ь метод Пирсона нахождения кривых распределения вероятностей,
ь метод Чебышева получения ортогональных полиномов,
которые были положены в основу обобщенного метода Грамма - Шарлье нахождения кривой распределения вероятностей.
Глава 1. Система кривых Пирсона.

В данной главе ставится задача нахождения закона распределения случайной величины в удобном для практического использования виде. Для ее решения рассматривается подход К. Пирсона, который является выдающимся представителем английской статистической школы.
§ 1. Дифференциальное уравнение Пирсона.

Рассмотрим случайную величину, заданную своей выборкой , таким образом, можем записать - статистической распределение. Ставится задача нахождения закона распределения случайной величины в удобном для практического использования виде.
Метод Пирсона заключается в том, что мы рассматриваем дифференциальное уравнение Пирсона:
(1)
и исследуем, какие решения можно получить при различных значениях параметров уравнения (1).
Общий интеграл этого уравнения представим в виде:
где
.
Значение этого неопределенного интеграла зависит от корней уравнения
(2),
следовательно, от его дискриминанта
который можно написать в виде
,
вводя параметр
ж.
Или иначе, величину ж можно представить в виде:
ж,
где величины представимы через центральные моменты статистических распределений к-го порядка, которые определяются по формуле
,
где есть
.
Тогда
, .
Через величины можно представить и величины следующим образом [5]:
Величина ж называется критерием Пирсона (каппа Пирсона) и раз-личные значения ее дают нам следующие выводы о корнях уравнения:
А. Если ж, то и уравнение (1) имеет вещественные корни различных знаков.
В. Если 0< ж<1, то и уравнение (1) имеет комплексные корни.
С. Если ж>1, то и уравнение (1) имеет вещественные корни одного знака.
Соответственно этим случаям Пирсон различает три главных типа своих кривых, которые он назвал соответст-венно типами I, IV и VI. Затем ж может равняться , что дает переходные типы кривых. Наконец, присоединяя некоторые дополнительные условия, мы можем увеличить число переходных типов. Всего система кривых Пирсона заключает 12 типов и нормальную кривую.
В своих разработках Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения задачи идентификации используется метод Пирсона.
§ 2. Основные типы кривых Пирсона.

В этом параграфе будут рассмотрены основные типы кривых распределения вероятностей, предложенные и классифицированные Пирсоном.
Тип I.
Пусть ж<0. Тогда
и уравнение (2) имеет вещественные корни различных знаков: , так что можем записать
.
Тогда правая часть уравнения (1) может быть представлена в виде:
,
где
.
Пусть еще
.
Тогда уравнение (1) перепишется в виде
и общий интеграл его можно представим в виде
,
где и значения и должны удовлетворять условиям
.
Тип I получается, если заключается в интервале . Тогда
и
или, как обычно пишут
.
Так как выражаются определенным образом через моменты , то, очевидно, и также выражаются через те же моменты. Для этого введем число
.
Тогда простое преобразование дает следующие формулы:
.
Эти формулы используются вообще при вычислении параметров и других кривых Пирсона.
Далее, пользуясь этими же формулами,
,
следовательно,
.
Затем
,
или, после простых подсчетов,
,
где
.
Таким образом, и представляют корни уравнения
,
Когда найдены и , и находятся по формулам
,
в которых
, .
Здесь использовано равенство
,
которое получается, так мы имеем
,
и
,
следовательно,
,
откуда
(так как ), нужно брать .
Таким образам, и есть корни уравнения
и и по формулам
,
в которых
,
где находится из равенства
.
Остается найти . Оно находится по равенству
.
При помощи подстановки
мы находим:
.
Следовательно,
.
Тип IV.
Второй главный тип кривых Пирсона, соответствующий значениям
0< ж<1, когда уравнение (1) имеет комплексные корни.
Пусть эти корни равны
,
где
.
Тогда уравнение (1) будет
,
откуда
,
и
,
или
,(3)
причем
.
Параметры кривой (3), выражаются следующим образом через моменты и константы :
(здесь , и ),
,
где - функция Пирсона, определяемая равенством
.
Интеграл в правой части можно привести к другому виду:
подстановка
приводит его к виду
.
Обычно, полагая
,
пишут в виде
,
где
.
Тип VI.
Третий главный тип кривых Пирсона, соответствующий значениям критерия ж>1 . В этом случае уравнение (2) имеет вещественные корни одного знака. Не приводя вывода уравнения кривой типа VI, аналогичного выводу уравнения кривой типа I [5], прямо приведем уравнение, отнесенное к средней выравниваемого распределения, как началу координат:
(в нем ). Его параметры вычисляются по формулам:
,
причем берется , если и , если ; и дают выражения:
,
причем должно быть ;
,
и
.
Уравнение кривой типа VI пишут также в виде:
беря за начало координат точку
.
Параметры вычисляются как выше, а имеет теперь такое выражение:
.
Кривая простирается от до , если , и от до , если .
§ 3. Переходные типы кривых Пирсона.

Переходные типы кривых Пирсона получаются при специальных значениях критерия ж и при некоторых условиях, налагаемых на и .
Тип II.
Получается при ж=0, и имеет уравнение
,
отнесенное к моде, которая теперь равна средней (кривая симметрична относительно начала). Ее параметры вычисляются по формулам
Кривая простирается от -а до а. На концах распределения , если и , если . Эта кривая имеет так называемую U-образную форму с антимодой вместо моды.
Тип VII.
Имеет уравнение
,
получается при ж=0, и имеет параметры
Нчало координат в средней (средняя равна моде).
Тип III.
Имеет уравнение
с началом координат в моде и с параметрами
.
Получается при ж
Тип V.
Имеет уравнение
с параметрами
кривая получается при ж=1 и бесконечна в одном направлении.
Тип VIII.
Имеет уравнение
,
простирается от -а до 0, получается при
ж,
причем зависит от , а параметр т получается как решение уравнения
и он не должен быть больше 1 или меньше 0.
Тогда
,
а начало в точке
Тип IX.
Имеет уравнение
,
простирается от -а до 0, получается при
ж
Параметр т определяется как решение уравнения
Тогда
,
а начало будет в точке
Тип X.
Имеет уравнение
с началом координат в точке ; получается как специальный случай кривой типа III при .
Тип XI
Имеет уравнение
,
получается при
ж
и простирается от до , а т находится из уравнения
и b зависит от m.

Тогда

,

а начало координат в точке

.

Тип XII.

Имеет уравнение

,

получается при

ж.

Кривая простирается от до , начало координат в точке и

.

Тип N.

Тринадцатый тип кривых распределения Пирсона - нормальная кривая с уравнением
,
которая получается при условиях
ж.
Типы II, VI, VII, VIII, IX представляют специальные случаи кривой типа I, тип X - специальный случай типа III, а тип XI - типа VI. [5] (См. приложение 1.)
Глава 2. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей.

В этой главе рассмотрено получение ортогональных полиномов способом, который разработал П. Л. Чебышев. А именно, через разложение в непрерывную дробь суммы
и рассмотрение знаменателей подходящих дробей полученной непрерывной дроби. Причем показано, что полученные таким образом ортогональные полиномы отвечают условиям метода наименьших квадратов, а так же показано их применение для нахождения кривых распределения вероятностей.
§ 1. Получение ортогональных полиномов по способу Чебышева.
Пусть даны значения интерполируемой функции,
соответствующие значения аргумента . Каждому значению аргумента ставится в соответствие частота .
Требуется найти такую целую функцию
,
где , которая удовлетворяла бы условию наименьшего значения суммы
.
В данной задаче в качестве веса предлагается рассмотреть [8]
,
где n есть
или иначе говоря n - сумма всех испытаний.
Для решения нашей задачи находим коэффициенты , которые определяются из следующих уравнений
;
;
……………………
;
;
После преобразований получаем следующую систему уравнений для нахождения коэффициентов
;
;
……………………
……………………
;
……………………
;
где
Такой подход к нахождению коэффициентов имеет существенный недостаток - при повышении степени полинома хотя бы на единицу приходится переписывать все уравнения и решать систему заново.
Есть другой вариант построения искомого полинома [8].
Пусть будет целая функция от степени , которая обращается в при . Положим
,
где - целые функции степеней , а - коэффициенты.
Пусть теперь сумма первых членов выражения
равняется
,
т.е. .
Каковы в этом случае условия относительно и при которых сумма
имеет наименьшее значение?
Обозначим эту сумму через :
,
и, подставляя в нее
,
составляем обычным способом дифференцирования следующие уравнения:
Отсюда следует:
Так как есть ортогональные полиномы по построению, следовательно все слагаемые вида будут равняться 0.
В результате преобразований получим выражения для коэффициентов :
;
;
………………
;
………………
.
Теперь можно представить функцию
в таком виде
.
Легко убедиться, что для перехода от найденного выражения интерполируемой функции к целой функции степени , достаточно к левой части полученной функции приписать один новый член
.
Для дальнейшего перехода к целой функции степени , также удовлетворяющей условию наименьшего значения суммы
,
достаточно прибавить к найденному выражению функции степени , такой новый член
.
Таким образом, решение задачи параболического интерполирования по способу наименьших квадратов приводится к нахождению ряда
Этот р и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.