На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 01.03.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Федеральное агентство по образованию Российской Федерации
САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО
Кафедра компьютерной алгебры и теории чисел
Основная теорема алгебры
Курсовая работа
студента 1 курса 121 группы механико-математического факультета
Батура Ирина Сергеевна
Научный руководитель Е.В. КОРОБЧЕНКО, ассистент
Зав. кафедрой В.Н.КУЗНЕЦОВ, д.т.н., профессор
САРАТОВ
2009 год
СОДЕРЖАНИЕ
1. Введение
2. Основные определения, используемые в курсовой работе
3. Элементы теории пределов для комплексных чисел
4. Доказательство основной теоремы
5. Список используемой литературы
1. ВВЕДЕНИЕ
Данная работа посвящена Основной теореме Алгебры, изучению существования корней в поле . Как предположение эта теорема впервые встречается у немецкого математика Питера Роуте(1617г.). Д'Аламбер первым в 1746г. опубликовал доказательство этой теоремы. Его доказательство основывалось на лемме. Доказательство это было бы совершенно строгим, если бы Д'Аламбер мог доказать, что-то на комплексной плоскости значение модуля многочлена достигает наименьшего значения. Во второй половине 18 века появляются доказательства Эйлера, Лапласа, Лагранжа и других. Во всех этих доказательствах предполагается заранее, что какие-то "идеальные" корни многочлена существуют, а затем доказывается, что, по крайней мере, один из них является комплексным числом. Со времен доказательства теоремы в алгебре было открыто очень много нового, поэтому сегодня "основной" эту теорему назвать уже нельзя: это название теперь является историческим.
Целью моей работы является выявления, что поле комплексных чисел алгебраически замкнуто. Для доказательства Основной теоремы Алгебры я использовала ряд лемм: лемма Даламбера и лемма о достижении точной нижней грани значений.
При написании работы мною была использована следующая литература: Д.К.Фадеев "Лекции по алгебре", Л.Д.Кудрявцев "Курс математического анализа". А.Г.Курош "Курс высшей алгебры".
2. Основные определения, используемые в курсовой работе
Множества, удовлетворяющие требованиям:1-операция сложения,2-операция умножения,3-связь операций сложения и умножения, и содержащие хотя бы один элемент, отличный от нуля, называется полями.
Множество комплексных чисел можно определить как множество упорядоченных пар действительных чисел, , , в котором введены операции сложения и умножения согласно следующему определению:
В результате этого определения множество указанных пар превращается в поле, т.е. удовлетворяет условиям 1,2,3. Полученное таким образом поле, называется полем комплексных чисел.
Последовательность комплексных чисел - это функция, определенная на множестве натуральных чисел и имеющая своими значениями комплексные числа.
Последовательность называется подпоследовательностью , если для любого k существует такое натуральное , что =, причем Б тогда и только тогда, когда .
Комплексное число - расширение множества вещественных чисел, обычно обозначается. Любое комплексное число может быть представлено как формальная сумма , где x и y-- вещественные числа, i-- мнимая единица, то есть число, удовлетворяющее уравнению .
Вещественное число (действительное число) - любое положительное число, отрицательное число или нуль.
Функция - 1) Зависимая переменная величина; 2) Соответствие между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение величины y (зависимой переменной или функции в значении 1).
Теорема Больцано-Вейерштрасса: из любой ограниченной последовательности можно извлечь сходящуюся подпоследовательность.
Последовательность называется ограниченной на множестве Е, если существует такая постоянная М>0, что для всех и всех выполняется неравенства
Последовательность сходится к функции f равномерно на множестве Е, если для любого существует такой номер , что если , то для всех выполняется неравенство. Последовательность называется равномерно сходящейся на множестве Е, если существует функция f, к которой она равномерно сходится на Е.
3. Элементы теории пределов для комплексных чисел
В моей работе полиномы рассматриваются только над полями и как функции от комплексной или вещественной переменной, так что моя работа является скорее главой математического анализа, а не алгебры, хотя теорема о существовании корня у любого отличного от константы полинома с комплексными коэффициентами (т.е. установление алгебраической замкнутости поля ) носит название основной теоремы алгебры.
Определение: Пусть задана последовательность комплексных чисел . Число называется ее пределом, если для любого действительного числа существует такой номер , что при выполняется неравенство . В этом случае пишут lim , а=lim, b=lim. Предельное соотношение lim=c равносильно соотношению , ибо
max
Последовательность такая, что R, при некотором R, называется ограниченной.
Для вещественных переменных известная теорема Больцано-Вейерштрасса: из любой ограниченной последовательности можно извлечь сходящуюся подпоследовательность. То же самое верно и для последовательностей, составленных из комплексных чисел.
Действительно, пусть ограниченная последовательность, т.е. , тогда , так что есть ограниченная последовательность вещественных чисел. Из нее можно выбрать сходящуюся подпоследовательность . Рассмотрим соответствующую подпоследовательность мнимых частей . Она ограничена, и из нее можно извлечь сходящуюся подпоследовательность .
Соответствующая подпоследовательность комплексных чисел имеет сходящиеся последовательности ве и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.