На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Шпаргалка Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

Информация:

Тип работы: Шпаргалка. Предмет: Математика. Добавлен: 21.08.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


1. Определение неопред. интеграла. Если ф-ия F(x) - первообр для ф-ии f(x) на промежутке [a,b], то мн-о ф-ий F(x)+C, где С =const, назыв неопред интегр от ф-и f(x) на этом промежутке: ?f(x)dx=F(x)+C При этом ф-я f(x) назыв подынтегр ф-ей, f(x)dx - подынтегр выр-ем, х - переменной интегр-я.
2. Опред-ие первообр от непрерыв ф-ии. Ф-ия F(x) назыв первообр для ф-ии f(x) на промежутке [a,b], если для всех значений х из этого промежутка вып- я F'(x)=f(x). Если ф-ия f(x), хЄ[a,b] - непрерыв, то для нее сущ-ет первообразная (неопред. Интеграл)
4. Выр-ие (?f(x)dx). Производная неопред интеграла = подынтегр ф-ии. (?f(x)dx)'=f(x). Док-во: (?f(x)dx)'= =(F(x)+C)'= F'(x)= f(x)dx
5. Выр. ?dF(x) Неопред интеграл от дифф-ла некоторой ф-ии = сумме этой ф-ии и произвольной постоянной ?dF(x)=F(x)+C.Так как ?dF(x)= F'(x)dx, то ?F'(x)dx=F(x)+C. Теорема: Если ф-я F(x) является первообр ф-ии f(x) на отрезке [a,b], то мн-во всех первообр ф-ии f(x) задается формулой F(x)+C, С=const.
Док-во: F(x)+C - первообр, тогда (F(x)+C)'= F'(x)+C'= F'(x)=f(x) Ф(х) - -тоже первообразная: Ф'(х)=f(x), xЄ[a,b]. (Ф(х)-F(x))'= Ф'(х)-F'(x)=f(x)- f(x)=0 =>Ф(х)-F(x)=C, С-const. Таким образом Ф(х)=F(x)+С. Ф-ия, производ которой на некотором промежутке Х равна 0, постоянна на этом промежут-ке. ?'(x)=0 => ?(x)=C, для каждого хЄ[a,b], тогда для каждого х1,х2 Є [a,b], х1<х2. По теореме Лангранжа: ?(x2)- ?(x1)=0, ?(x)=С
6. Если k-const, ненулевое число, то ?kf(x)dx=k?f(x)dx -k можно вынести из-под знака интеграла. Пусть F(x) - первообр для ф-ии f(x), т.е. F'(x)=f(x), тогда kF(x)-первообр для ф-ии kf(x): (kF(x))'=kF'(x)=kf(x). k?f(x)dx=k[C+(x)F]=kF(x)+C1=?kf(x)dx, где С1=kC 7. Если ?f(x)dx=F(x)+C, то и ?f(u)du= F(u)+C, u=?(x) - произвольная ф-ия, непрерывн, дифферен-я. f(x)-непрерыв. => ?f(x)dx=F(x)+C, u=?(x)-непрерыв. дифферен.ф-я. F(u)=F(?(x)) -согласно инвариантности первого дифф-ла. Инвариантность первого дифф-ла: y=f(x) dy=f'(x)dx y=f(u), u=?(x)- непрерыв, диф-я dy=f'(x)du dF(u)=F'(u)du= =f(u)du ?f(u)du=?d(F(u))=F(u)+C
8. Выражение d(?f(x)dx)=f(x)dx - Дифференциал от неопред интегр = подынтегр выр-ю. d(?f(x)dx)=d(F(x)+C) =dF(x)+dC=F'(x)dx+0=f(x)dx
9. Интеграл ?[f(xg(x)]dx= ?f(x)dx±?g(x)dx -неопред интеграл от алгебраической суммы двух ф-ий равен алгебраической суммe интегр от этих
ф-ий в отдельности: Пусть F(x) и G(x) - первообразные для ф-ий f(x) и g(x): ?[f(x)+g(x)]dx=?(F'(x)+G'(x))dx=?(F(x)+G(x))'dx=?d(F(x)+G(x))= F(x)+G(x)+C= F(x)+G(x)+C1+C2=F(x)+C1+G(x)+C2 =?f(x)dx+?g(x)dx.
10. Вывод формулы замены переменного в неопред интегр (подстановка). Пусть ф-я x=?(t) опред-на и диф-ма на некотором промежутке Т и Х-мн-во значений этой ф-ии, на кот. определена ф-я f(x). Тогда, если на мн-е Х ф-я f(x) имеет первообр, то на мн-ве Т справедлива фор-ла: ?f(x)dx= ?f[?(t)]?'(t)dt Док:Пусть F(x)-первообр для f(x) на мн-ве Х. Рассмотрим на мн-ве Т сложную ф-ю F[?(t)]: (F[?(t)])'= Fx'[?(t)]?'(t) =f[?(t)]?'(t), т.е. ф-я f[?(t)]?'(t) имеет на мн-ве Т первообр F[?(t)] >?f[?(t)]?'(t)dt=F[?(t)]+C,Замечая что F[?(t)]+C=F(x)+C= ?f(x)dx, => получаем ?f(x)dx= ?f[?(t)]?'(t)dt.
Дарбу: Mn=sup (f(x)); mn=inf (f(x)), x(xi-1; xi) S?= Mn?xi - верхний; S?= mn ?xi- нижний; СВ-ВА:
1, верхняя сумма >=нижней; 2, при изменеии разбиения верхняя не увел, нижняя не умень.; 3, измельчение разбиения-добовлене нескольких точек 0=< S?-I< -для верх и ниж - Лемма.
11. Вывод формулы интегрир по частям. Пусть ф-ии u(x) и v(x) определены и диф-мы нанекотором пром-ке Х и пусть ф-я u'(x)v(x) имеет первообр на этом пром-ке. Тогда на пром-ке Х ф-я u(x)v'(x) также имеет перво-ю и справедлива формула: ?u(x)v'(x)dx=u(x)v(x)-?v(x)u'(x)dx. Док-во: [u(x)v(x)]'= u'(x)v(x)+u(x)v'(x) u(x)v'(x)=[u(x)v(x)]'-u'(x)v(x)Первообр ф-ии [u(x)v(x)]' на пром-ке Х является ф-я u(x)v(x). Ф-я u'(x)v(x) имеет первообр на Х по условию теор. , и ф-я u(x)v'(x) имеет пер-ю на Х.Интегр-уя последнее рав-во получаем: ?u(x)v'(x)dx=u(x)v(x)-?v(x)u'(x)dx. Так как v'(x)dx=dv,u'(x)dx=du, то ее можно записать в виде: ?udv=uv-?vdu По лекциям: d(uv)=udv+vdu;?d(uv)= ?udv+vdu => ?udv=?d(uv)-?vdu=uv-?vdu Теорема о существовании конечного.
12. Определение дробно рациональной ф-ии. Понятие правильной и неправильной рациональной фун-ии. Простейшие дроби вида 1-4. Фун-ия вида Pn(x)=anxn+ an-1xn-1 +…+ a1x1+ a0, n - натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.
Определение: Дробно рацион фун-й (рациональной дробью) назыв фун-ия равная отношению 2-х мн-нов: f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).Пример(деление дроби). Простейшие дроби 4 вида
1) A/(x-a)
2) A/(x-a)k k>=2 целое
3) (Mx+n)/(x2+px+q) x2+px+q=0, D<0
4) (Mx+n)/(x2+px+q)k k>=2
предела интегральных сумм для непрерывных ф-ий: Пусть сущ f.
13. Если х=а - действит корень кратности k знамен-ля Qn(x) прав-ой рацион дроби, т.е. Qn(x)=(х-а)k On-k(x) Тогда дробь будет представляться в виде суммы 2 правильных дробей: Pm(x)/Qn(x)=A/(х-а)k+Rs(x)/(х-а)k-1On-k(x) A-некоторая постоянная, s<n-1 Док-во: Pm(x)/Qn(x)=[A On-k(x)+ Pm(x)-A Qn-k(x)]/[(х-а)k On-k(x)]=[ A On-k(x)]/ [(х-а)k On-k(x)]+[ Pm(x)-A Qn-k(x)]/ [(х-а)k On-k(x)]=A/(х-а)k +[Pm(x)-A Qn-k(x)]/ [(х-а)k On-k(x)], для каждого А. х=а - корень ура-я Pm(x)- A On-k(x)=0; Pm(а)- A On-k(а)=0; Pm(а)?0 и A On-k(а)?0; A= Pm(а)/A On-k(а); Pm(x)- A On-k(x)=(x-a) Rs(x); Pm(x)/Qn(x)= A/(х-а)k +[(x-a) Rs(x)]/[(x-a) On-k(x)]= A/(х-а)k + Rs(x)/[(х-а)k-1 On-k(x)]; A= Pm(а)/On-1(а).
14. Если Qn(x)= (x2+px+q)µ Тn(x), где p2-4q<0, Тn(x) мн-ен не делится на x2+px+q, то правильную рацион дробь Pm(x)/Qn(x) можно представить в виде суммы 2 правильных: Pm(x)/Qn(x) =(Mx+N)/ (x2+px+q)µ +Фs(x)/[ (x2+px+q)µ-1. Тn(x)],µ,N-нек постоянные, s<n-1 Док-во: Pm(x)/Qn(x) =[(Mx+N) Тn(x)+ Pm(x)-(Mx+N) Тn(x)]//(x2+px+q)µ Тn(x)]= (Mx+N)/(x2+px+q)µ+ [Pm(x)-(Mx +N) Тn(x)]/[ (x2+px+q)µ Тn(x)] для люб µ и N. x2+px+q=0, D<0, x12=?±i?, µ и N: Pm (?+i?)-[ µ (?+i?)+N]*T n(?+i?)=0. µ (?+i?)+N=[ Pm (?+i?)] /[ T n(?+i?)]=k+il. Система{ µ ?+N =k=> N=k- ?(L/b) µb=L=> m=L/b Pm(x)/Qn(x)=(Mx+N)/(x2+px+q)µ s(x)/[ (x2+px+q)µ-1Тn(x)] конечному пределу при ранге разбиения 0.
15. Разложение рацион дроби на простейшие. Если рацион ф-я R(x)/Q(x) имеет степень мн-на в числ-ле < степени мн-на в знамен-ле, а мн-н Q(x) представлен в виде Q(x)= A(x-a)r(x-b)s…(x2+2px+q)t(x2+2ux+v)z …, где a,b,.., p,q,u,v,…-вещественные числа, то эту ф-ю можно единств образом представить в виде:R(x)/Q(x) =A1/(x-a)+A2/(x-a)2+…. An/(x-a)n+…. (M1x+N1) / (x2+2px+q)+ (M2x+N2)/ /(x2+2px+q)2+…+(Mkx+Nk)/(x2+2px+q)k +, где А1,А2,.М1..N1-вещест числа
16. Определение дробно рацион фун-ии. Понятие правильной и неправ-ной рациональной фун-ии. Простейшие дроби вида 1-4. Фун-ия вида Pn(x)=anxn+ an-1xn-1 ++ a1x1+ a0, n - натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.
Определение: Дробно рацион фун-uей (рациональной дробью) назыв фун-ия равная отн-ю 2-х мн-нов: f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).Пример(деление дроби). Простейшие дроби 4 вида
1)A/(x-a) 2)A/(x-a)k k>=2 целое
3)(Mx+n)/(x2+px+q) x2+px+q=0, D<0
4) (Mx+n)/(x2+px+q)k k>=2
17. Вычисление интегралов от тригонометрических ф-ий.
1) ?R(sinx, cosx)dx Замена перем-ных tg(x/2)=t (универ. тригонометр замена) sinx=2t/(1+t2) cosx=(1-t2)/ /(1+t2) dx=2/(1+t2)dt;?R(2t/(1+t2), (1-t2)/ /(1+t2)) 2/(1+t2)dt=?R(t)dt
2)?R(sinx) cosxdx=|sinx=t, cosxdx=dt|=?R(t)dt
3)?R sinx(cosx)dx=|cosx=t, -sinxdx=dt|=-?R(t)dt
4) ?R(tgx)dx=|t=tgx, x= и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.