Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Прогнозная экстраполяция продуктивности коров по дуванскому району РБ

Информация:

Тип работы: реферат. Добавлен: 23.06.2012. Сдан: 2011. Страниц: 24. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство  сельского хозяйства Российской Федерации ФГОУ ВПО 
Башкирский  Государственный Аграрный Университет   
 

                                                                                   Факультет: экономический   
                                                                                   Кафедра: организации АП
                                                                                   Специальность: ЭУ
                                                                                   Форма обучения: очная
                                                                                   Курс, группа: 401 
 

_______________________________
(Фамилия,  имя, отчество  студента) 

РЕФЕРАТ 

    «Прогнозная экстраполяция продуктивности
    коров    по дуванскому  району  РБ»
 
                                                                    
                         
 
 

                                             
                                                                       «К защите допускаю»:
                                                                                   Руководитель:
                                                                                                                     _____________________
                                                                                                                        (ученая степень, звание, ФИО)  
                                                                                                                   
                                                                                                                    «___»  __________ 2010г.
                                                                                                       (подпись) 
 
 
 
 

Оценка при  защите
____________________
_____________________
        (подпись)
«____»   _______________ 2010г. 
 
 
 
 

Уфа 2010 
 

Содержание 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    ВВЕДЕНИЕ 

      Прогнозирование и планирование экономики любой  страны, основных сфер ее жизнедеятельности  являются важнейшими достижениями мировой  науки и практики. Исходные, базовые предпосылки прогнозирования и планирования были сформированы еще в царской России. Эта наука может быть представлена как синтез различных наук об экономике народного хозяйства.
    Целью реферата является закрепление и  углубление теоретических знаний по прогнозированию и планированию развития АПК в условиях рыночных отношений.
    Объектом  исследования данного реферата является прогнозирование и планирование  удоя  молока  на  1  корову в  Дуванском районе.
    Организация осуществления прогнозных и плановых разработок включает организацию подготовки и разработки материалов в виде общепринятого или стандартизированного документа, определения функций для разработчиков и ответственных исполнителей по соответствующим разделам. 
 
 
 
 
 
 
 
 
 
 
 
 

    1 Краткая характеристика природныхэкономических
    и социальных условий в  ДУВАНСКОМ  районе 

      Дуванский  район относится к  зоне  северо-восточная лесостепь. Почвенный покров пахотных земель представлен тяжелосуглинистыми темно-серыми лесными (более 50 %), серыми лесными почвами (20 %) и черноземами выщелоченными и оподзоленными (20 %). Эродировано около 70 % площади пашни. Содержание гумуса в серых лесных почвах 4 ? 6%, темно-серых лесных ? 6 ? 8 %, черноземах  ? 8 ? 11 %. Мощность гумусового горизонта 15 ? 40 см, запасы гумуса ? 200 ? 400 т/га.
      Реакция почвенной среды средне- и слабокислая (около 80% площади). Если почвы северной лесостепи более отзывчивы на азот, то почвы северо-восточной лесостепи ? на фосфор. Около 90 % территории пахотных почв относится к группам очень низкой и низкой степени обеспеченности фосфором. Обеспеченность обменным калием ? средняя и повышенная. Наряду с неблагоприятными агрофизическими свойствами (низкая водопроницаемость и высокая влагоемкость, тяжелый механический состав, пониженная аэрация) почвы северо-восточной лесостепи отличаются укороченностью всего почвенного профиля, более низкой микробиологической активностью. Факторами первого и второго минимума плодородия почв выступают недостаточная обеспеченность их теплом и подвижным фосфором. Агротехнические приемы должны быть направлены в первую очередь на улучшение водно-воздушного и температурного режима почв. Большое значение имеют приемы защиты почв от водной эрозии. Климатические и почвенно-экологические условия должны быть учтены при определении структуры посевных площадей, севооборотов, направленных на расширение доли зернофуражных культур и многолетних трав. Возделывание этих культур (особенно клевера и ячменя) требует в первую очередь снижения кислотности почв путем известкования. Расширение посевов многолетних трав будет способствовать защите почв от водной эрозии, что особенно важно для юрюзано-айской увалисто-предгорной части зоны. Важным приемом окультуривания почв, создания бездефицитного баланса гумуса является внесение органических удобрений (не менее 8 т/га севооборотной площади), мульчирование (тепловая мелиорация), сидеральные пары. Для интенсивных технологий возделывания зерновых, в первую очередь озимой ржи, пригодны темно-серые лесные почвы и черноземы Айского равнинного агропочвенного округа на ровных или слабопокатых участках с уклоном не более 3° южной, юго-западной и юго-восточной экспозиций.
      Территория  Республики Башкортостан крайне неоднородна по климатическим условиям. Это связано с местоположением республики в центре материка и влиянием меридианально расположенных Уральских гор, а также с сильной расчлененностью рельефа.
Таблица 1 Агроклиматические   показатели северо-восточной зоны РБ 

Агроклиматические показатели Северо-восточная лесостепь Пределы
Продолжительность периодов: безморозный
 
95
 
5 °С 158 ± 5 дн.
10 °С 116  
15 °С 65  
Сумма температур за 10 °С период 1700 ±  150
Сумма температур выше 5 ° С 1250 ± 100
Сумма  осадков  (мм)   за год 515 ± 50 мм
Средняя   температура   воздуха 0,6 ±  0,2
За    вегетационный    период:    
сумма осадков  (мм) 276 ± 25 мм
гидротермический    коэффициент 1,5 ± 0,2
 
      Северо-восточная  лесостепная зона  по обеспеченности теплом и влагой относится к наиболее прохладной и влажной. Сумма положительных температур за десятиградусный период составляет 1550 ? 1850 °С, ГТК ? 1,3 ? 1,7, сумма осадков за этот период ? 250 ? 300 мм. Сравнительно низкая температура за период с мая по август ? 14,4 °С (против 16 ? 17 °С в степной зоне) обусловливает меньшее испарение, что часто при одинаковой сумме осадков создает переувлажнение в северо-восточных районах.
      Такие термические комплексные показатели, как сумма эффективных температур выше 5 °С ? 1175 ? 1375 °С и среднегодовая температура 0,5 ? 0,8 °С, являются наиболее низкими в сравнении с другими зонами республики.
      Короткий  безморозный период (90 ? 100 дней) и этой зоне существенно сокращает период вегетации. В некоторые годы поздние весенние заморозки захватывают июнь, а ранние осенние отмечаются во второй половине августа.
      Период с отрицательными температурами длится 168 ? 178 дней. Их сумма за зиму составляет 1800 ? 1900 °С. Средняя высота снега 30 ? 50 см. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 Описание сущности (содержания) метода экстраполяции

 
 
      Сущность  методов прогнозной экстраполяции  состоит в анализе изменений объектов исследования во времени и распространение выявленных закономерностей на будущее. Исходной информацией для экстраполяции являются временные ряды. Эти методы достаточно хорошо применимы в практике среднесрочного прогнозирования. При экстраполяции предполагается, что:
      — текущий период изменения показателей  может быть охарактеризован плавной  траекторией — трендом;
      — основные условия, определяющие технико-экономические  показатели в текущем периоде, не претерпят существенных изменений в будущем, т.е. в будущем они будут изменяться по тем же законам, что и в прошлом, и настоящем;
      — отклонения фактических значений показателей  от линии тренда носят случайный  характер и распределяются по нормальному  закону.
      Методы  прогнозной экстраполяции:
      1) Простая экстраполяция;
      2) Аналитическое выравнивание рядов  динамики;
      3) Экспоненциальное сглаживание;
      4) Скользящих средних;
      5) Гармонических весов;
      6) На основе уравнений авторегрессии.
      Простая экстраполяция. Этот метод предполагает расчет простого среднего значения показателя, который закладывается в основу краткосрочного прогноза. Так, положим необходимо обосновать краткосрочный прогноз товарной продукции, т.е. необходимо определить среднеарифметическую величину:

где       х — прогнозируемая   величина;
              хi — объем   продукции   i-го вида;
               п — число рассматриваемых лет.
      Аналитическое выравнивание динамических рядов. Аналитическое выравнивание при прогнозировании — это нахождение математической функции, которая наиболее точно описывает тенденцию изменений.
       Основными этапами аналитического выравнивания являются выбор формы кривой, отражающей тенденцию, определение показателей, дающих количественную характеристику тенденции изменений; оценка достоверности прогнозных расчетов.
      Выбор формы кривой можно осуществлять на основе построения графика. Общий ид графика, как правило, позволяет установить: а) имеет ли динамический ряд показателя отчетливо выраженную тенденцию; б) если да, то является ли эта тенденция плавной; в) каков характер тенденции (монотонная или немонотонная, возрастающая или убывающая).  Динамика изменений показателя бывает довольно сложной, поэтому ее не всегда удается выразить элементарными аналитическими функциями (прямая, парабола, логарифмическая, экспонента и др.). В этом случае приходится придерживаться более сложных сочетаний этих функций, т.е. использовать комбинированные функции.
      Как правило, для повышения обоснованности и достоверности выравнивания с целью более точного выявления имеющейся тенденции проводят вариантный расчет по нескольким аналитическим функциям и на основе экспертных и статистических оценок определяют лучшую форму связи.
      После установления формы связи и выбора подходящих математических кривых задача сводится к определению показателей, которые дадут количественную характеристику. Необходимо определять параметры уравнения связи. Для их нахождения лучше всего пользоваться методом наименьших квадратов. В этом случае выравнивающая функция будет занимать такое положение среди точек (фактических значений показателей), при котором суммарное отклонение точек от функции будет минимальным. Если фактические значения рассматриваемых показателей обозначить yi, a вычисленные по выравнивающему уравнению — , то сформулированное требование можно записать в виде:
                                                 
где п — число лет динамики.
     Оценить динамику показателей урожайности  сельскохозяйственных культур и выравнивающих динамический ряд функций можно, используя приемы математической статистики, а также графики.
     Наглядное изображение колебаний рассматриваемых  показателей кривых, выявляющих тенденцию изменений этих колебаний, позволяет порой, не прибегая к сложным математическим расчетам, оценить выравнивающие аналитические функции и выбрать из них наиболее подходящие с целью последующего прогнозирования урожайности.
      Более достоверную и обоснованную оценку можно дать, используя такие статистические показатели (характеристики), как средний коэффициент роста, общая и остаточная дисперсии, коэффициент корреляции, индекс корреляции, коэффициент автокорреляции исходного ряда и ряда отклонений, определенного по разнице фактических и выровненных по какой-либо аналитической функции данных.
      Из  приведенных показателей особое внимание следует обратить на коэффициент автокорреляции исходного ряда и ряда отклонений, от величины которого в значительной степени зависят достоверность статистических оценок и обоснованность прогнозов урожайности сельскохозяйственных культур.
      Как известно, временные ряды урожайности  культур являются зависимыми (каждый последующий член временного ряда коррелирован с предыдущим). Иначе говоря, уровень урожайности в каждый конкретный момент времени (за конкретный год) во многом будет определяться его уровнем в предыдущие годы.
      Данное  обстоятельство не позволяет применять  к таким рядам известные формулы статистических и вероятностных оценок, так "как последние основываются на независимости наблюдений и нормальности их распределения. В связи с этим прогностические расчеты урожайности сельскохозяйственных культур затруднительны или даже невозможны.
      Как правило, для рядов динамики урожайности  культур, имеющих тесную связь со временем, характерна высокая автокоррелированность. Однако правильно подобранная аналитическая форма позволяет частично или полностью устранить автокорреляцию, потому что характеризует тенденцию изменений в рассматриваемых динамических рядах. Отклонения фактических значений урожайности от значений, найденных по выравнивающим функциям, характеризуют вариацию рядов, не связанную с основной тенденцией: распределение этих отклонений случайно и при рассмотрении длительной динамики подчиняется закону нормального распределения. Это дает возможность применять для оценки прогнозов вероятностные характеристики, используя аппарат математической статистики и теории вероятностей.
     Наиболее  простой способ проверки гипотезы о  наличии или отсутствии автокорреляции — использование таблиц с критическими значениями коэффициента автокорреляции при различных уровнях значимости. Если табличное значение коэффициента автокорреляции выше фактического, можно утверждать, что автокорреляция отсутствует или устраняется, а следовательно, можно использовать формулы для вероятностей оценки выравнивающих функций и значений урожайности сельскохозяйственных культур, прогнозируемым по этим кривым.
     Метод экспоненциального  сглаживания. Между достигнутым в текущем году уровнем урожайности уровнями в предыдущие годы существует определенная связь. С увеличением периода времени связь уровней ослабевает, а значит, результаты более поздних наблюдений несут большую информацию об ожидаемом уровне урожайности. Поэтому при прогнозировании большее значение следует придавать последним показателям динамических рядов. Этому принципу отвечает метод экспоненциального сглаживания, разработанный Р. Брауном.
     Экспоненциальное  сглаживание — это выравнивание особенно сильно колеблющихся динамических рядов в целях последующего прогнозирования. Данный метод позволяет давать обоснованные прогнозы на основании рядов динамики, имеющих умеренную связь во времени, и обеспечивает больший учет показателей, достигнутых в последние годы. Сущность метода заключается в сглаживании временного ряда с помощью взвешенной скользящей средней, в которой веса подчинены экспоненциальному закону.
     Прогнозирование урожайности сельскохозяйственных культур с помощью метода экспоненциального сглаживания основывается на предположении, что расчетный период качественно сходен с последним отрезком исследуемого периода.
     При проведении исследований целесообразно  применять рекуррентные формулы для полиномов первой или второй степени. Использование полиномов третьей и более высокой степени нежелательно, так как различия между выравненными значениями существенно уменьшаются с ростом порядка полинома, а сами вычисления становятся слишком сложными и трудоемкими.
     В случае использования полинома первой степени для выявления тенденции и сглаживания динамических рядов урожайности применяется линейная функция. При этом тренд выражается двумя членами ряда Тейлора и некоторым малым числом ( ), зависящим от времени:
            = А + Bt +
      Основные  показатели экспоненциального сглаживания определяются по следующим формулам: характеристики сглаживания, оценки коэффициентов, начальные условия.
      При выборе начальных условий Браун  рекомендует рассчитывать коэффициенты А  и В путем выравнивания исходного временного ряда способом наименьших квадратов, предполагая соответственно линейную (когда используется полином первой степени) тенденцию изменений.
      Процесс экспоненциального сглаживания  основывается на цепочечных расчетах. Сначала устанавливаются исходные параметры выравнивающих кривых А, В, С, по которым с помощью формул находят начальные условия. На основе этих условий по формулам определяются характеристика сглаживания, затем — оценки коэффициентов для экспоненциального сглаживания первого значения. Коэффициенты уравнения (оценки коэффициентов), найденные при экспоненциальном сглаживании последнего значения показателя в исходном динамическом ряду, используются для последующего прогноза.
      Результаты  прогноза в значительной мере зависят  от выбора параметра сглаживания. В случае его малых значений при прогнозировании учитываются все прошлые наблюдения, в случае больших значений — в основном последние. Существуют различные подходы к выбору параметра сглаживания. При выборе оптимального варианта весьма важным является логический анализ прогнозного уравнения. Если при перенесении на будущее выявленной тенденции отмечается снижение урожайности сельскохозяйственных культур или продуктивности животных, использовать экстраполяцию по методу экспоненциального сглаживания нецелесообразно. В этом случае рекомендуется применять другие методы экстраполяции или принципиально иные методы прогнозирования (экспертные оценки, балансовый метод, производственные функции и др.).
      При выполнении расчетов по методу экспоненциального сглаживания желательно предполагать линейную и параболическую тенденцию. Однако использовать параболу второго порядка нужно осторожно, так как коэффициент при квадрате аргумента в уравнении параболы часто бывает отрицательным (ветви параболы направлены вниз).
      Метод скользящих средних. Часто ряды динамики характеризуются резкими колебаниями показателей по годам. Такие ряды, как правило, имеют слабую связь со временем и не обнаруживают четкой тенденции изменения. В этом случае методы аналитического выравнивания и экспоненциального сглаживания малоэффективны, так как достоверность расчетов резко падает.
      Выравнивать по скользящим средним можно также ряды динамики, имеющие тесную и умеренную связь со временем. При этом появляется возможность определять среднее прогнозное значение для планового периода в целом.     Интервал, величина которого остается постоянной, постепенно сдвигается на одно наблюдение. Величина интервала скольжения Р может принимать любое значение от минимального (Р= 2) до максимального (Р= N— 1, где N— длина рассматриваемого временного ряда). Сглаженный ряд короче первоначального на Р— 1 наблюдение. При использовании метода скользящих средних прежде всего определяют величину интервала скольжения, обеспечивающую взаимное погашение случайных отклонений во временном ряду. Выбор величины интервала должен осуществляться с учетом особенностей динамики урожайности сельскохозяйственных культур, а также с учетом периодов развития сельскохозяйственного производства. При отсутствии цикличности в изменении показателей рекомендуется производить многовариантный расчет при изменяющемся параметре сглаживания. Лучший вариант Р определяется на основании последующей оценки выровненных   рядов (по коэффициентам, темпам роста и т.д.). Найденный  таким образом параметр скольжения затем используется для прогнозирования показателей урожайности.
      Для любого интервала скользящая средняя  исчисляется по формуле: 
,

где yi i-е наблюдение ряда (i = 1, 2,..., n);   — k -я скользящая средняя при интервале Р (k = 1, 2,..., п — (Р— 1).
      Метод гармонических весов по сущности близок к методу экспоненциального сглаживания, он основывается на тех же принципах, но вместо скользящей средней в нем используют идею скользящего тренда. Экстраполяцию показателя проводят по скользящему тренду, отдельные точки ломаной линии взвешиваются с помощью гармонических весов, т.е. более поздним наблюдениям придается больший вес. Метод был разработан польским ученым Э. Хельвигом. 
 
 
 

3 Выравнивание рядов  (5-летних и 11-летних) скользящих средних по уравнениям прямой и параболы

 
      Часто ряды динамики характеризуются резкими  колебаниями показателей по годам. Такие ряды, как правило, имеют  слабую связь со временем и не обнаруживают четкой тенденции изменения. В этом случае методы аналитического выравнивания и экспоненциального сглаживания малоэффективны, так как достоверность расчетов резко падает. Доверительные границы прогноза порой оказываются шире колебаний показателя в ряду динамики.
      При использовании метода скользящих средних прежде всего определяют величину интервала скольжения, обеспечивающую взаимное погашение случайных отклонений во временном ряду.
    Таблица 3.1 Выровненные скользящие средние значения удоя  молока  на  1  корову  по  Дуванскому  району, ц
Временной ряд, годы Продуктивность (Уt), ц Временные значения
Р=5 Р=11
1990 22,49 - -
1991 22,96 - -
1992 20,14 22,08 -
1993 22,39 22,03 -
1994 22,40 21,95 -
1995 22,27 22,53 22,06
1996 22,57 22,73 21,93
1997 23,03 22,46 21,96
1998 23,40 22,01 23,03
1999 21,03 21,70 24,16
2000 20,01 21,74 25,36
2001 21,03 23,45 26,06
2002 23,24 26,21 -
2003 31,95 29,32 -
2004 34,80 31,11 -
2005 35,58 - -
2006 29,97 - -
 
      Теперь  попробуем проанализировать тенденцию  изменения ряда с помощью программного пакета  Excel. Для этого сначала построим график тенденции изменения удоя  молока  на  1  корову в ц, выровненную по 11-летней скользящей средней.

      Рисунок 1 Значения удоя  молока  на  1 корову в  Дуванском  районе, выровненные по  11-летней скользящей средней 

      Далее построим линию тренда с использованием уравнения прямой.

    Рисунок 2. Значения удоя  молока  на  1 корову  в  Дуванском районе, выровненные по 11-летней скользящей средней
    и по уравнению  прямой
      Теперь  построим линию тренда с использованием уравнения параболы.

      Рисунок 3 Значения удоя  молока  на  1 корову  в Дуванском районе, выровненные по  11-летней скользящей средней
        и по уравнению параболы
      На  основании полученных трендов можно  сделать вывод, что коэффициент  аппроксимации в уравнении параболы значительно выше, чем в уравнении прямой. Это значит, что уравнение параболы описывает изменение тренда более точно, чем уравнение прямой. Также, при полученных уравнениях рассчитываем прогнозные значения удоя  молока   на 1  корову  в ц  на 2007 – 2009 гг. составили:
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.