На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Гидромеханические процессы

Информация:

Тип работы: контрольная работа. Добавлен: 24.06.2012. Сдан: 2011. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство  образования и науки  РФ
Государственное образовательное учреждение
Среднего  профессионального образования
Псковский индустриальный техникум 

     Отчет
     по  дисциплине «Типовые технологии производства»
     на  тему:«Гидромеханические процессы.». 

                                                                                                         
                                              Выполнил студент:
                                    219 группы
                                            Трухин Вячеслав
                                                          Проверил: преподаватель
                                  Барсук И.В. 
 
 
 

Псков
2010-11 
 
 
 

     Содержание                                                          Лист

1.Введение……………………………………………………………………………..

 
2. Краткая история развития гидромеханики……………………………………..………………………. 

     3. Гидравлика…………………………………………………………………………………………………………….……
     2.2 Гидравлические машины.........................................................................................
     2.3. Процессы…………………………………………………………………………………………………………………
     2.4 Список литературы……………………………………………………………….………………………………….
 
 
 
 
 
 
 
 
 
 
 
 
  1.Введение.
Техническим приложением  гидромеханики является наука гидравлика.
Гидравлика —  это наука о законах движения и равновесия жидкостей и способах приложения этих законов к решению конкретных технических задач. С гидравликой связаны отрасли науки и техники, занимающиеся созданием, исследованием и использованием различных гидравлических машин: насосов, турбин, гидропередач и гидропривода. Часто описание теории этих машин, их устройства и принципов работы объединяют в одном учебном предмете «Гидравлика и гидравлические машины».
Слово гидравлика произошло  от греческого hydro (вода) и aulos (трубка). В настоящее время это понятие  значительно расширилось: гидравлика занимается изучением любой жидкости, движущейся не только в трубах.
В начале своего развития гидравлика представляла собой теоретическую  науку — математическую механику жидкости или гидромеханику. Используя  сложный математический аппарат и принимая некоторые допущения в отношении физических свойств жидкости, эта наука рассматривает движение жидкости по упрощенным схемам. Но методы математической гидромеханики не дали возможности решить целый ряд практических задач. В связи с этим стала развиваться практическая наука — техническая механика жидкости, решающая инженерные задачи методом упрощения гидравлических явлений, но с введением в теоретические уравнения поправочных коэффициентов, полученных в результате эксперимента.
В настоящее время приходится сталкиваться с задачами, при решении которых одновременно используются методы теоретической и технической гидромеханики. Поэтому различие в методах этих двух ветвей одной и той же науки постепенно исчезает. Современная гидравлика представляет собой самостоятельную, сформировавшуюся отрасль знаний, находящую применение в различных областях техники.
2. Краткая история развития гидромеханики.
Жизнь и деятельность человека во все времена были неразрывно связаны с водой. Еще в глубокой древности люди использовали реки и моря как пути сообщения и занимались орошением земель. Много лет назад в Средней Азии и Китае, Египте и Месопотамии, Риме и Греции были созданы различные гидротехнические сооружения для подъема и подачи воды: каналы и плотины, водоводы и акведуки. Во времена Траяна в Риме было 9 водопроводов общей длиной 436 км. Однако каких-либо сведений о гидравлических расчетах этих сооружений не найдено.
Первым научным  трудом в области гидравлики принято  считать трактат древнегреческого математика и механика Архимеда (ок. 287—212 до н. э.) «О плавающих телах», написанный примерно за 250 лет до н. э. Архимедом открыт закон о равновесии тела, погруженного в жидкость, который затем лег в основу теории плавания кораблей и их остойчивости.
Дальнейшее развитие гидравлика получила в XIV—XVII веках. Широко известны труды гениального итальянского ученого Леонардо да Винчи (1452—1519). Он изучал механизм движения жидкости в реках и каналах, процесс истечения жидкости, занимался постройкой гидротехнических сооружений, установил принцип работы гидравлического пресса, изобрел центробежный насос и многое другое. К этому же периоду относятся работы голландского инженера С. Стевина (1548— 1620); он определил давление жидкости на плоскость и описал гидравлический парадокс.
Итальянский ученый Г. Галилей (1564—1642) систематизировал основные положения гидростатики и впервые  указал на зависимость гидравлических сопротивлений от скорости потока жидкости и его плотности, а его соотечественник  Э. Торричелли (1608—1647) вывел формулу для расчета скорости истечения жидкости. Важное значение для гидравлики имели работы французского физика и математика Б. Паскаля (1623—1662), открывшего закон о передаче внешнего давления, носящий его имя.
Особо следует отметить работы выдающегося английского физика, математика, механика и астронома И. Ньютона (1643—1727), который впервые ввел понятие вязкости жидкости и установил зависимость между напряжением трения, градиентом скорости и свойствами жидкости; он же заложил основы теории гидродинамического подобия.
Исследования в  этот период носили в основном теоретический  характер и не были связаны друг с другом. Лишь во второй половине XVIII века труды крупнейших ученых-механиков  и математиков, и прежде всего  Д. Бернулли и Л. Эйлера, послужили теоретической основой гидромеханики и гидравлики.
Д. Бернулли (1700—1782) вывел основное уравнение движения жидкости. С именем Д. Бернулли связано  понятие «гидродинамика»: в 1738 г. он опубликовал свою работу «Гидродинамика»  — академический труд, выполненный автором во время работы в Петербурге.
Л. Эйлер (1707—1783)—знаменитый  математик, механик, физик и астроном, уроженец Швейцарии. Не найдя на родине условий для научной деятельности, он в 1727 г. переехал в Россию и работал  здесь до конца своих дней. Он опубликовал более 800 научных работ, относящихся к разным областям знаний, и создал основополагающий труд «Общие принципы движения жидкости».
Великий русский  ученый М. В. Ломоносов (1711—1765), занимаясь  общими проблемами физики, уделял большое  внимание вопросам движения жидкостей и газов и практическому применению гидравлики, а открытый им закон сохранения массы и энергии лежит в основе современной гидравлики. М. В. Ломоносов поддерживал научные контакты с Л. Эйлером в период работы швейцарского ученого в Петербургской Академии наук.
Вторая половина XVIII и начало XIX века характеризуются  ростом промышленного производства и бурным развитием техники. Для  решения различного рода инженерных задач в области гидравлики требуются  новые научные методы, учитывающие свойства реальной жидкости. Примерно в это время начинается второй период развития гидравлики — превращение ее в прикладную науку.
Большой вклад в  становление технической гидромеханики  внесли французские ученые А. Пито (1695—1771)—инженер-гидротехник, широко известный изобретением «трубки Пито», А. Шези (1718—1798), который вывел формулу для определения скорости движения жидкости, Ж. Борда (1733—1799), который вывел уравнение для определения потерь напора при резком расширении потока; итальянский профессор Д. Вентури (1746—1822), исследовавший процесс истечения жидкости из насадков; Д. Вейсбах (1806—1871) —крупный немецкий ученый, чьи теоретические и экспериментальные исследования в области движения жидкости не утратили своего значения до настоящего времени; английский ученый О. Рейнольдс (1842—1912), установивший два режима движения жидкости и критерий гидродинамического подобия;
Л. Прандтль (1875—1953), разработавший теорию турбулентных потоков.
Не остались в  стороне от развития технической  гидравлики и ученые России. Инженерное направление в гидромеханике интенсивно разрабатывалось в стенах Петербургского института путей сообщения, где была создана первая в России гидравлическая лаборатория и плодотворно работала группа ученых под руководством профессора П. П. Мельникова (1804—1880) — почетного члена Петербургской Академии наук, издавшего в 1836 г. первый на русском языке учебник по гидравлике «Основания практической гидравлики...». Выдающийся русский инженер, почетный член Петербургской Академии наук, профессор Н. П. Петров (1836—1920) на основе гипотезы Ньютона о трении в жидкости разработал гидродинамическую теорию смазки машин.
Особенно большой  вклад в развитие гидравлики внес Николай Егорович Жуковский (1847—1921)—автор целого ряда работ по технической гидродинамике. Важнейшей его работой, вышедшей в свет в 1899 г., было исследование «О гидравлическом ударе».
В начале XX века в  гидравлике стали формироваться  различные направления специальных  исследований. Характерной особенностью этого периода является проведение коллективных исследований и создание научных школ.
Талантливый . инженер  и ученый В. Г. Шухов (1853—1939) разработал методы расчета нефтепроводов и  изобрел оригинальное устройство для  подъема нефти — эрлифт. Ведущую  роль в разработке теории и расчета гидравлических сооружений сыграли работы Н. Н. Павловского (1884—1937).
С первых дней создания Советского государства наступил новый  этап в развитии гидравлики в нашей  стране. Разработка и осуществление  плана ГОЭЛРО, проектирование и строительство крупных гидроэлектростанций потребовали решения целого ряда прикладных задач в области гидравлики, динамики русловых процессов и др. Были созданы специализированные научно-исследовательские и проектные институты, лаборатории при кафедрах некоторых ведущих высших учебных заведений. Ученые проводили исследования и изыскательские работы, необходимые для осуществления проектов строительства каналов им. Москвы, Беломоро-Балтийского, Волго-Донского им. В. И. Ленина, а также сооружения мощных гидроэлектростанций на Волге, Днепре, крупнейших реках Сибири.
Базой развития  гидроэнергетики  явилось создание в стране крупного энергетического гидромашиностроения, что позволило планомерно увеличивать  единичную мощность гидроагрегатов на строящихся ГЭС. Так, на Волжской ГЭС им. XXII съезда КПСС мощность одной турбины составляет 115 МВт, на Братской— 250 МВт, на Красноярской — 500 МВт, на Саяно-Шушенской — 640 МВт. Не менее значительны достижения гидромашиностроения по разработке насосов высокого давления с большой подачей, объемного гидропривода и гидродинамических передач.
3.Гидравлика.
3.1 Некоторые физические свойства жидкостей  

Рассмотрим физические свойства жидкостей, определяющие их поведение  при гидравлических процессах и  применение в различных областях техники.
Температурное расширение. Увеличение объема жидкостей при  нагревании необходимо учитывать при  их практическом применении, так как  нагревающиеся жидкости могут переливаться через края резервуара, разрушать  герметично закрытые посуды, вызывать погрешность в работе приборов и пр.
Температурное расширение зависит от физической природы жидкости и характеризуется коэффициентом  объемного расширения, который показывает относительное изменение объема жидкости при увеличении температуры  на 1 градус.
Сжимаемость и упругость. Под сжимаемостью понимают свойство жидкости изменять свой объем под действием давления. Так как все капельные жидкости (обычные жидкости, встречаемые в природе и применяемые в технике) имеют незначительную сжимаемость, то в гидравлических расчетах их чаще всего считают несжимаемыми. Но иногда сжимаемостью жидкости пренебрегать нельзя, например, если жидкость находится под землей на больших глубинах, где она испытывает высокие давления. Нельзя также пренебрегать сжимаемостью жидкостей при расчетах гидравлического удара.
Под упругостью понимают способность жидкости принимать  свой прежний объем после снятия внешней нагрузки. Свойство упругости  определяет использование жидкости в качестве рабочего тела во многих гидравлических устройствах и машинах  и характеризуется модулем упругости К (Па).
Для капельных жидкостей  модуль упругости возрастает с увеличением  температуры и давления. Для воды модуль упругости может быть принят равным К=2-103 МПа. Это значит, что  при повышении давления на 0,1 МПа  объем воды уменьшается на 1/20000. Это указывает на весьма незначительную сжимаемость воды. Сжимаемость других капельных жидкостей имеет такой же порядок, поэтому они считаются практически несжимаемыми, а их удельный вес (отношение веса жидкости к ее объему) —.независящим от давления.
Капельные жидкости при особых условиях способны выдерживать  большие растягивающие усилия. Вода может выдерживать отрицательные  нагрузки до 2,8-104 кПа. Сопротивление  растяжению возрастает по мере удаления из жидкости растворенных в ней газов. Так, обычная водопроводная вода способна выдерживать отрицательные усилия до 2,0-Ю3 кПа, а после удаления из нее воздуха — до 1,0-Ю4 кПа.
В капиллярах сопротивление  жидкости растяжению увеличивается. В  обычных же условиях сопротивление  растяжению внутри капельных жидкостей очень мало, и поэтому иногда считают, что жидкости неспособны, выдерживать отрицательные нагрузки.
Испаряемость и  кавитация. Испаряемость жидкостей  зависит от температуры и давления. При снижении давления в жидкости и при повышении температуры упругость паров увеличивается и жидкость закипает. Под упругостью паров обычно понимают парциальное (частичное) давление насыщенных паров жидкости над ее поверхностью, при котором пары находятся в равновесии с жидкостью, т. е. когда процессы испарения и конденсации взаимно уравновешены: 

В обычных условиях (при нормальном атмосферном давлении и температуре) вода содержит около 2% объема растворенного в ней  воздуха. Очевидно, что при повышении  температуры и понижении давления, когда вместе с испарением жидкости в ней начнут выделяться пузырьки воздуха. Появление в воде паровоздушных пузырьков называется кавитацией.
Жидкость, содержащая паровоздушную смесь, приобретает  свойства, отличные от свойств воды: сжимаемость ее значительно возрастает. Попадая в область повышенного давления, пузырьки пара конденсируются и переходят в жидкое состояние, а воздушные сжимаются или полностью смыкаются. Это явление происходит мгновенно и сопровождается сильными ударами с резким повышением давления, в несколько тысяч раз превосходящего атмосферное. Так как микроудары многократно повторяются на очень малой площадке, происходит разрушение твердой поверхности. В результате имеет место так называемая кавитационная эрозия.
Явление кавитации  уменьшает пропускную способность трубопроводов, снижает подачу и КПД насосов. Кавитационная эрозия приводит к разрушению лопастей гидравлических турбин, насосов, гребных винтов и даже бетонных гидротехнических сооружений.
Вязкость. Вязкостью  называется свойство жидкости сопротивляться сдвигу или скольжению одних слоев жидкости относительно других, так как между слоями жидкости возникают силы внутреннего трения и касательные напряжения.
Впервые предположение  о наличии сил внутреннего  трения высказал И. Ньютон в 1686 г., а  достоверность этой гипотезы экспериментально обосновал и подтвердил профессор Н. П. Петров в 1883 г. Согласно гипотезе И. Ньютона величина сил внутреннего трения между слоями не зависит от давления, а зависит от рода жидкости, площади соприкосновения слоев и относительной скорости перемещения.
Чтобы лучше понять это утверждение, рассмотрим рисунок 1.1. При движении вязкой жидкости вдоль  твердой стенки происходит торможение потока за счет трения частиц жидкости о стенку. В результате скорости движения слоев и будут уменьшаться по мере приближения их к стенке. Очевидно, что в непосредственной близости от стенки будет находиться заторможенный элементарный слой, где скорость близка к нулю.
Различие в скоростях  движения приводит к тому, что происходит проскальзывание соседних слоев и возникновение касательных напряжений.
Физический смысл  коэффициента динамической вязкости можно  понять, приняв du/dy =1. Тогда из уравнения. Таким образом, коэффициент динамической вязкости можно рассматривать как  напряжение внутреннего трения при градиенте скорости, равном единице.
Текучесть жидкостей  характеризуется величиной, обратной коэффициенту динамической вязкости.  
 
 

Из закона трения, описываемого уравнением, видно, что  напряжение трения может возникать  только в движущейся жидкости при наличии скоростной деформации. В покоящейся жидкости скоростная деформация равна нулю; следовательно, касательные напряжения также равны нулю. Жидкости, для которых приемлема зависимость получили  название нормальных или ньютоновских.
Однако существуют жидкости, для которых зависимость    неприемлема. К ним относятся нефть и некоторые нефтепродукты, битумные и полимерные материалы, смазочные масла при низких температурах, расплавленные металлы при температурах, близких к температуре кристаллизации, различного рода суспензии и коллоидные растворы (например, зубная паста). Такие жидкости называют аномальными или неньютоновскими. Они отличаются от нормальных (ньютоновских) наличием сил трения даже в состоянии покоя, что препятствует переходу жидкостей в движение до определенного напряженного состояния. Их движение начинается только после преодоления некоторого предельного значения касательного напряжения то, которое не зависит от градиента скорости по нормалям.
Особенность движения аномальных жидкостей была выявлена русским ученым Ф. Н. Шведовым еще в 1889 г., а затем исследована и описана американским ученым Бингемом в 1916 г. Поэтому их иногда называют бингемовскими или шведовскими.
Вязкость капельных  жидкостей в значительной степени  зависит от температуры. Например, с повышением температуры вязкость капельной жидкости уменьшается, а воздуха увеличивается. Это объясняется тем, что в жидкостях молекулы расположены значительно ближе друг к другу, чем в газах. Так как вязкость обусловлена силами межмолекулярного сцепления, а эти силы с увеличением температуры жидкости уменьшаются, то и вязкость ее уменьшается. В то же время в газах молекулы движутся беспорядочно, а с ростом температуры беспорядочность теплового движения молекул возрастает, что вызывает увеличение вязкости.
Для таких жидкостей, как бензин, керосин, спирт, молоко и  другие, характерны низкие значения вязкости, в то время как вязкость патоки, мазута, глицерина и других довольно значительна.
Вязкость играет существенную роль при перекачивании  жидкости по трубам, при опорожнении резервуаров, при работе различных машин и механизмов. Особенно важна зависимость вязкости смазочных масел от температуры. Например, значительное снижение вязкости автомобильных масел при повышении температуры может сделать их слишком жидкотекучими. В результате ухудшаются их рабочие характеристики, что вызывает преждевременный износ двигателя. В связи с этим применяют специальные добавки, стабилизующие вязкость масел.
В гидравлике создана  модель абстрактной, не существующей в  природе жидкости, которая называется идеальной жидкостью. Для идеальной жидкости характерны следующие допущения:
абсолютная несжимаемость, т. е. неизменяемость объема под действием  внешних сил и температуры;
полное отсутствие вязкости, т. е. исключение возможности возникновения сил внутреннего трения.
Реальная жидкость отличается от идеальной, прежде всего  тем, что при ее движении возникают  касательные напряжения (внутреннее трение). В покоящейся жидкости касательные  напряжения всегда отсутствуют, и потому в гидростатике нет необходимости различать реальную и идеальную жидкости.
Использование модели идеальной жидкости позволяет проводить  исследования движущихся жидкостей  с применением современного математического  аппарата. Чтобы перейти от идеальных  жидкостей к реальным, необходимо либо учесть напряжения и деформации, которые возникают в реальных жидкостях, либо ввести дополнительные коэффициенты, полученные для реальных жидкостей экспериментальным путем.
В гидравлике принято  еще одно допущение. Жидкость рассматривается как непрерывная, сплошная среда, заполняющая пространство без пустот и промежутков, которую называют континуум (от латинского слова continuum — непрерывное). Исходя из этого, считают, что и физические характеристики, определяющие состояние и движение жидкости, распределяются и изменяются в занятом ею объеме непрерывно. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Гидравлические  машины. 

для перемещения  и сжатия газов, а также их сжижения, охлаждения и др. Перемещение газа осуществляется под действием разности давлений на двух участках потока в замкнутых каналах (трубопроводах, газоходах и т.д.) или без них. В последнем случае перемещение газов наз. вентиляцией. Необходимая разность давлений определяется требуемой скоростью газового потока и допускаемым гидравлич. сопротивлением системы, возникающим при движении газа по трубопроводу. Перепад давлений, обеспечивающий перемещение газов, достигается с помощью их сжатия, или компримирования. Конечное давление при сжатии зависит от условий теплообмена газа с окружающей средой. Согласно теории, газ может сжиматься изотермически или адиабатически. При изотермич. сжатии вся расходуемая энергия превращ. в теплоту, к-рая полностью отводится в окружающую среду. При адиабатич. сжатии теплообмен с ней отсутствует и вся выделяющаяся теплота затрачивается на возрастание внутр. энергии газа и повышение его т-ры. Действит. процесс сжатия - политропический и рассматривается как совокупность последоват. изменений равновесных состояний газа. При этом изменяется его т-ра и часть теплоты отводится в окружающую среду 

Вентилятор — устройство для перемещения газа со степенью сжатия менее 1,15 (или разностью давлений на выходе и входе не более 15 кПа).
Отдельные приёмы организованной вентиляции закрытых помещений применялись  ещё в древности. Вентиляция помещений до начала XIX века сводилась, как правило, к естественному проветриванию. Теорию естественного движения воздуха в каналах и трубах создал М. В. Ломоносов. В 1795 В. X. Фрибе впервые изложил основные положения, определяющие интенсивность воздухообмена в отапливаемом помещении сквозь неплотности наружных ограждений, дверные проёмы и окна, положив этим начало учению о нейтральной зоне. В начале XIX в. получает развитие вентиляция с тепловым побуждением приточного и удаляемого из помещения воздуха. Отечественные учёные отмечали несовершенство такого рода побуждения и связанные с ним большие расходы теплоты. Академик Э. X. Ленд указывал, что полная вентиляция может быть достигнута только механическим способом.С появлением центробежных вентиляторов технология вентиляции помещений быстро совершенствуется. Первый успешно работавший центробежный вентилятор был предложен в 1832 А. А. Саблуковым. В 1835 этот вентилятор был применён для проветривания Чагирского рудника на Алтае. Саблуков предложил его и для вентиляции помещений, трюмов кораблей, для ускорения сушки, испарения и т. д. Широкое распространение вентиляции с механическим побуждением движения воздуха началось с конца XIX века. 
 

Турбокомпрессор или газотурбинный  нагнетатель — устройство, использующее энергию выхлопных газов для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Процессы
Фильтрование
Фильтрование (лат. filtrum — войлок, англ., франц. filtration)- это процесс разделения неоднородных систем (например, суспензия, аэрозоль) при помощи пористых перегородок, пропускающих дисперсионную среду и задерживающих дисперсную твёрдую фазу. 
 

Техника фильтрования 

Фильтрование  жидкостей в лаборатории проводят с помощью воронок.
Фильтрование  осуществляется либо в режиме постоянной разности давлений (например, вакуум-фильтры), либо в режиме постоянной скорости (например, рамный фильтр-пресс).
Все современные  способы очистки можно разделить  укрупненно на две группы: механические фильтры, являющиеся перфорированной перегородкой той или иной конструкции, и очистители в силовых полях (гравитационные, центробежные, магнитные, электростатические). Недостатком первых является малая грязеемкость, увеличение перепада давления по мере забивания отверстий или пор в перегородке, наличие байпасного клапана, перепускающего без очистки часть жидкости из линии загрязненной жидкости в линию очищенной жидкости, ограничения по степени загрязненности, подаваемой на очистку жидкостей, большие габаритные размеры, увеличивающиеся по мере увеличения пропускной способности или тонкости очистки, и др. Все это приводит к необходимости периодической замены или регенерации фильтрующего элемента, встройки сигнальных устройств и т.п. Следует попутно отметить, что запыленность окружающей среды зачастую настолько велика, что простая замена фильтроэлементов в гидросистемах вносит загрязнений больше, чем изнашивание за все время эксплуатации.
Очистка в  силовых полях при достаточно большой грязеемкости имеет свои недостатки. К ним относятся для  гравитационной очистки (осаждения) большое время на очистку, большие площади очистительных ванн, малая производительность, зависимость от плотности частиц, температурных и других условий; для центрифуг – сложность конструкции, невозможность встройки непосредственно в технологический цикл, необходимость периодической разборки для очистки с последующей балансировкой, огромные энергетические затраты на очистку и др.; для магнитной очистки – отбор в основном ферромагнитных частиц, необходимость в малой скорости обтекания (до 0,01м/с), тонкость слоя жидкости, в котором магнитное воздействие эффективно, невозможность удерживания на магните большой массы уловленных частиц, зависимость от температуры, ударов (для постоянных магнитов) и др; для электростатической очистки – возможность работы только в токонепроводящих жидкостях, низкая производительность.
Выходом из этого положения в области  очистки различных жидкостей  явился принцип гидродинамической  очистки. В ее основе лежит создание возле каждой ячейки фильтроэлемента потоков, которые позволяют проникнуть через отверстие только частицам, размер которых заведомо (в 3?10 раз) меньше размера отверстия. Более крупные частицы сбрасываются из фильтра или складируются в бункере. Реализуется основной принцип: задача фильтра не в том, чтобы задержать на поверхности фильтроэлемента недопустимо крупные частицы, а в обеспечении чистоты жидкости, прошедшей через фильтр. Благодаря такому принципиальному решению фильтроэлемент не засоряется и не требует технического обслуживания в течение длительного времени работы, не нуждается в сменных элементах либо периодической регенерации имеет меньший и постоянный перепад давления, большую пропускную способность.
В технике  фильтрование осуществляют в специальных  аппаратах — фильтрах, снабжённых пористыми фильтровальными перегородками, которые пропускают жидкость или газ, но задерживают твёрдую фазу (например, рукавные фильтры). 
 

Центрифугирование
Центрифугирование — разделение неоднородных систем (напр., жидкость — твердые частицы) на фракции по плотности при помощи центробежных сил. Центрифугирование осуществляется в аппаратах, называемых центрифугами. Центрифугирование применяется для отделения осадка от раствора, для отделения загрязненных жидкостей, производится также центрифугирование эмульсий (напр., сепарирование молока). Для исследования высокомолекулярных веществ, биологических систем применяют ультрацентрифуги. Центрифугирование используют в химической, атомной, пищевой, нефтяной промышленностях. 
 

Отстаивание.
Отстаивание, медленное расслоение жидкой дисперсной системы (суспензии, эмульсии, пены) на составляющие её фазы: дисперсионную среду и диспергированное вещество (дисперсную фазу), происходящее под действием силы тяжести. В процессе О. частицы дисперсной фазы оседают или всплывают, скапливаясь соответственно у дна сосуда или у поверхности жидкости. (Если О. сочетается с декантацией, то имеет место отмучивание.) Концентрированный слой из отдельных капелек у поверхности, возникший при О., называют сливками. Частицы суспензии или капли эмульсии, скопившиеся у дна, образуют осадок. Накопление осадка или сливок определяется закономерностями седиментации (оседания). О. высокодисперсных систем часто сопровождается укрупнением частиц в результате коагуляции или флокуляции. Структура осадка зависит от физических характеристик дисперсной системы и условий О. Он бывает плотным при О. грубодисперсных систем. Полидисперсные суспензии тонко измельченных лиофильных продуктов дают рыхлые гелеобразные осадки (см. Гели).
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.