На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Геоинформационные системы (ГИС)

Информация:

Тип работы: контрольная работа. Добавлен: 24.06.2012. Сдан: 2011. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
 
 
 
 
 
 
 
 
 
 
   КОНТРОЛЬНЯ  РАБОТА 

   по  дисциплине «ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ЭКОНОМИКЕ» 
 
 
 

   Тема: Геоинформационные системы (ГИС) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Кемерово, 2011 

 

Содержание 

 

Введение

     ХХI век… Объем информации, существующий в современном мире, не может сравниться с тем, который был получен в прошлых веках. Темпы жизни стремительно растут, методы получения информации приобретают все более индустриальный характер. Для организованного хранения, поиска нужной информации, ее обработки и анализа требуются современные, основанные на компьютерных технологиях, средствах.
     Законы, методы и способы накопления, обработки  и передачи информации с помощью компьютеров и иных технических устройств относятся к сфере общей информатики. На ее базе развиваются специальные направления: лесная информатика, медицинская информатика и т. д.
     Понятие информационная система (ИС) относится  не только к сфере компьютерных технологий. Существуют также некомпьютерные системы, работающие с информацией в аналоговой, а не в цифровой форме. 
     Упорядоченные массивы данных называют базами данных (БД). Они создаются с помощью  специальных программных комплексов, называемых системами управления базами данных (СУБД).
     Программные и технические средства, предназначенные  для обеспечения доступа к  информационным ресурсам – ввода  информации, ее хранения, преобразования, реализации различных запросов, представления  информации, называют информационно-поисковыми системами (ИПС).
     Для работы с пространственно распределенной информацией используют ИС особого  рода, называемые географическими информационными  системами (геоинформационными системами  или сокращенно ГИС). 
 

Глава 1.  Геоинформатика и географические информационные системы (ГИС)

1.1. Информатизация общества

Информатизация  коснулась сегодня всех сторон жизни  общества, и трудно, пожалуй, назвать  какую-либо сферу человеческой деятельности - от начального школьного образования до высокой государственной политики, - где не ощущалось бы ее мощное воздействие. Информатика дышит в затылок всем наукам, догоняя и увлекая их за собой, преобразуя, а порой и порабощая в стремлении к бесконечному компьютерному совершенству.
В науках о Земле информационные технологии породили геоинформатику и географические информационные системы (ГИС), причем слово "географические" обозначает в  данном случае не столько "пространственность" или "территориальность", а скорее комплексность и системность исследовательского похода.
Первые  ГИС были созданы в Канаде и  США в середине 60-х годов, а  сейчас в промышленно развитых странах  существуют тысячи ГИС, используемых в  экономике, политике, экологии, управлении ресурсами и охране природы, кадастре, науке и образовании. ГИС охватывают все пространственные уровни: глобальный, региональный, национальный, локальный, муниципальный, интегрируя разнообразную информацию о нашей планете: картографическую, данные дистанционного зондирования, статистику и переписи, кадастровые сведения, гидрометеорологические данные, материалы полевых экспедиционных наблюдений, результаты бурения и подводного зондирования.
В создании ГИС участвуют международные  организации (Организация объединенных наций, Программа по окружающей среде, Продовольственная программа), правительственные учреждения, министерства и ведомства, картографические, геологические и земельные службы, статистические управления, частные фирмы, научно-исследовательские институты и университеты. На разработку ГИС ассигнуют значительные финансовые средства, в деле участвуют целые отрасли промышленности, создается разветвленная геоинформационная инфраструктура, сопряженная с телекоммуникационными сетями.
Во многих странах образованы национальные и региональные органы, в задачи которых входит развитие ГИС и автоматизированного картографирования, формирование государственной политики в области геоинформатики, национального планирования, сбора и распространения информации, включая и исследование правовых проблем, связанных с владением и передачей географической информации, с ее защитой. Федеральная программа России предусматривает создание цифровых и электронных карт масштабов 1 : 10 000 - 1 : 1 000 000 и банков данных для этих карт, разработку ГИС различного ранга и назначения (для органов государственного управления, для демаркации границ России, региональных ГИС по Северу, Байкалу, муниципальных, территориальных и отраслевых ГИС.[1]
В Москве сформирован первый Российский научно-производственный центр геоинформации (Росгеоинформ). Одновременно развернуты региональные производственные центры в Санкт-Петербурге, Екатеринбурге, Новосибирске, Иркутске и Хабаровске. При создании разветвленной ГИС-инфраструктуры к этим центрам предполагается привязать местные и отраслевые ГИС разной проблемной ориентации, а также центры сбора и обработки аэрокосмической информации. В сеть ГИС России обязательно должны быть включены научные и научно-производственные базы и банки тематических данных, существующие в институтах Академии наук, вузах, отраслевых учреждениях и ведомствах.
Сущность  ГИС состоит в том, что она  позволяет так или иначе собирать данные, создавать базы данных, вводить  их в компьютерные системы, хранить, обрабатывать, преобразовывать и  выдавать по запросу пользователя чаще всего в картографической форме, а также в виде таблиц, графиков, текстов.
Повсеместность  использования ГИС привела к  многообразию толкований самого понятия. В научной литературе бытуют десятки  определений ГИС, в них отмечается, что ГИС - это аппаратно-программный и одновременно человеко-машинный комплекс, обеспечивающий сбор, обработку, отображение и распространение пространственно-координированных данных, интеграцию данных и знаний о территории для их эффективного использования при решении научных и прикладных задач, связанных с инвентаризацией, анализом, моделированием, прогнозированием и управлением окружающей средой и территориальной организацией общества. Такая несколько тяжеловесная дефиниция верно отражает многие свойства ГИС, используемых в географии, геологии, экологии и других отраслях знания, но все же не является исчерпывающей. Попытка охватить в определении все функциональные, технологические и прикладные свойства ГИС неизбежно оборачивается неполнотой. Можно предложить несколько других толкований, характеризующих разные аспекты ГИС.
С научной  точки зрения ГИС - это средство моделирования  и познания природных и социально-экономических  систем. ГИС применяется для исследования всех тех природных, общественных и  природно-общественных объектов и явлений, которые изучают науки о Земле и смежные с ними социально-экономические науки, а также картография, дистанционное зондирование. В технологическом аспекте ГИС (ГИС-технология) предстает как средство сбора, хранения, преобразования, отображения и распространения пространственно-координированной географической (геологической, экологической) информации. И наконец, с производственной точки зрения ГИС является комплексом аппаратных устройств и программных продуктов (ГИС-оболочек), предназначенных для обеспечения управления и принятия решений, причем важнейший элемент этого комплекса - автоматические картографические системы. Таким образом, ГИС может одновременно рассматриваться как инструмент научного исследования, технология и продукт ГИС-индустрии. Это достаточно типичная ситуация на современном уровне научно-технического прогресса, характеризующегося интеграцией науки и производства.

1.2. Основополагающие  понятия и термины

Геоинформационные технологии – бурно развивающееся направление современных информационных технологий. По этой причине пока нельзя говорить о существовании общепринятой терминологии в этой отрасли знаний. Достаточно привести многочисленные определения ГИС, предложенные разными авторами, чтобы понять, насколько еще молода эта сфера деятельности.
Итак: ГИС – это “внутренне позиционированная автоматизированная пространственная информационная система, создаваемая для управления данными, их картографического отображения и анализа”. (Berry J.)
Хочу  отметить, что данное определение не совсем полное, поскольку не учитывает человека, как элемент информационной системы. Человек в любой информационной системе занимает важное место – это и наблюдатель, и эксперт, и аналитик. Очень часто исследователи в области геоинформатики для акцентирования роли человека в ГИС используют словосочетание “человеко-машинный комплекс”.
ГИС –  это “аппаратно-программный человеко-машинный комплекс, обеспечивающий сбор, обработку, отображение и распространение пространственно-координированных данных, интеграцию данных и знаний о территории для их эффективного использования при решении научных и прикладных географических задач, связанных с инвентаризацией, анализом, моделированием, прогнозированием и управлением окружающей средой и территориальной организацией общества". (Кошкарев А.В.)
ГИС –  это “система, состоящая из людей, а также технических и организационных  средств, которые осуществляют сбор, передачу, ввод и обработку данных с целью выработки информации, удобной для дальнейшего использования в географическом исследовании и для ее практического применения”. (Konecny M.)
ГИС –  это “комплекс аппаратно-программных  средств и деятельности человека по хранению, манипулированию и отображению географических (пространственно соотнесенных) данных”. (AblerR.)
ГИС –  это “динамически организованное множество  данных динамическая база данных или банк данных), соединенное с множеством моделей, реализованных на ЭВМ для расчетных, графических и картографических преобразований этих данных в пространственную информацию в целях удовлетворения специфических потребностей определенных пользователей в пределах структуры точно определенных концепций и технологий”. (Degani A.)
ГИС –  это: "система, включающая базу данных, аппаратуру, специализированное матобеспечение и пакеты программ, предназначенных для расширения базы данных, для манипулирования данными, их визуализации в виде карт или таблиц и, в конечном итоге, для принятия решений о том или ином варианте хозяйственной деятельности". (Lillesand T.)
ГИС –  это: "реализованное с помощью автоматических средств (ЭВМ) хранилище системы знаний о территориальном аспекте взаимодействия природы и общества, а также программного обеспечения, моделирующего функции поиска, ввода, моделирования и др." (Трофимов А.М., Панасюк М.В.)
ГИС –  это интегрированная компьютерная система, находящаяся под управлением  специалистов-аналитиков, которая осуществляет сбор, хранение, манипулирование, анализ, моделирование и отображение пространственно соотнесенных данных (см. рис.1). [1]

Рис. 1. Схема геоинформационной системы. 

Как видно, определений ГИС много, но каждое из них является верным. Отличие их лишь в широте охвата рассматриваемой проблемы.
Чтение  карты – восприятие карты (визуальное, тактильное или автоматическое), основанное на распознавании картографических образов, истолковании и понимании ее содержания. Эффективность чтения карты зависит от читаемости карты, т.е. от легкости и быстроты восприятия отдельных обозначений, картографических образов и всего изображения в целом. В свою очередь, читаемость определяется наглядностью условных знаков, качеством оформления карты, общей загруженностью карты, различимостью деталей изображения.
Цифровая  карта – цифровая модель поверхности, сформированная с учетом законов картографической генерализации в принятых для карт проекции, разграфке, системе координат и высот. По сути, термин “цифровая карта” означает именно цифровую модель, цифровые картографические данные. Цифровая карта создается с полным соблюдением нормативов и правил картографирования, точности карт, генерализации, системы условных обозначений. Цифровая карта служит основой для изготовления обычных бумажных, компьютерных, электронных карт, она входит в состав картографической базы данных, является одним из важнейших элементов информационного обеспечения ГИС и одновременно может быть результатом функционирования ГИС.
Компьютерная  карта – карта, полученная на устройстве графического вывода с помощью средств автоматизированного картографирования (графопостроителей, принтеров, дигитайзеров и др. на бумаге, пластике, фотопленке и иных материалах) или с помощью геоинформационной системы.
Иногда  к компьютерной карте относят  также карты, изготовленные на неспециализированных приборах, например, на алфавитно-цифровых печатных устройствах, так называемые ЭВМ-карты или АЦ-ПУ-карты.
ГИС-технологии – технологическая основа создания географических информационных систем, позволяющая реализовать их функциональные возможности.
Геоинформационный анализ – анализ размещения, структуры, взаимосвязей объектов и явлений с использованием методов пространственного анализа и геомоделирования.
Функциональные  возможности ГИС – набор функций  географических информационных систем и соответствующих программных  средств:
• ввод данных в машинную среду путем  импорта из существующих наборов цифровых данных или с помощью оцифровки источников;
• преобразование данных, включая конвертирование  данных из одного формата в другой, трансформацию картографических проекций, изменение систем координат;
• хранение, манипулирование и управление данными во внутренних и внешних базах данных;
• картометрические операции;
• средства персональных настроек пользователей.
Геоинформатика  – наука, технология и производственная деятельность:
• по научному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем;
• по разработке геоинформационных технологий;
• по прикладным аспектам или приложениям ГИС  для практических или геонаучных целей.
Геоматика — это совокупность применений информационных технологий, мультимедиа и средств телекоммуникации для обработки данных, анализа геосистем, автоматизированного картографирования; также этот термин употребляется как синоним геоинформатики или геоинформационного картографирования.
Цифровое  покрытие (слой, тема) – семейство однотипных (одной мерности) пространственных объектов, относящихся к одному классу объектов в пределах некоторой территории и в системе координат, общих для набора слоев. По типу объектов различают точечные, линейные и полигональные цифровые покрытия.
Пространственный  объект (графический примитив) –  цифровое представление объекта реальности (цифровая модель местности), содержащее его местоуказание и набор свойств, характеристик, атрибутов или сам этот объект. Выделяют четыре основных типа пространственных объектов:
(1) точечные, (2) линейные, (3) площадные (полигональные), контурные и (4)поверхности.

1.3. История развития  ГИС

 
История ГИС берет своё начало с конца  пятидесятых годов прошлого столетия. За шестьдесят лет пройдено несколько этапов, позволивших создать самостоятельно функционирующую сферу – сферу геоинформационных технологий. Основные достижения в геоинформационной картографии были, к сожалению, получены в США, Канаде и Европе, а не в России. Россия и бывший СССР не участвовали в мировом процессе создания и развития геоинформационных технологий вплоть до середины 1980-х годов. Тем не менее, наша страна имеет свой, пусть небольшой, опыт развития геоинформационных систем и технологий.
В истории  развития геоинформационных систем выделяют четыре периода: 

Новаторский (пионерский) период (поздние 1950е - ранние 1970е гг.)
• исследование принципиальных возможностей информационных систем, пограничных областей знаний и технологий, наработка эмпирического  опыта, первые крупные проекты и  теоретические работы. 

Период  государственного влияния (ранние 1970е - ранние 1980е гг.)
• развитие крупных геоинформационных проектов, финансируемых государством, формирование государственных институтов в области  геоинформатики, снижение роли и влияния  отдельных исследователей и небольших групп.
Период  коммерческого развития (ранние 1980е - настоящее время)
• широкий  рынок разнообразных программных  средств, развитие настольных инструментальных ГИС, расширение области их применения за счет интеграции с базами атрибутивных данных, создание сетевых приложений, появление значительного числа непрофессиональных пользователей, организация систем, поддерживающие индивидуальные наборы данных на отдельных компьютерах и поддерживающим корпоративные и распределенные базы геоданных. 

Период  потребления (поздние 1980е - настоящее время)
• повышенная конкурентная борьба среди коммерческих производителей геоинформационных технологий и услуг дает преимущества пользователям ГИС, доступность и “открытость” программных средств позволяет пользователям самим настраивать, адаптировать, использовать и даже модифицировать программы, появление пользовательских “клубов”, телеконференций,
территориально  разобщенных, но связанных единой тематикой  пользовательских групп, возросшая  потребность в географических данных, начало формирования геоинформационной инфраструктуры планетарного масштаба.
Хотелось  бы несколько слов сказать об организациях, проектах и исследователях, сыгравших ключевую роль в развитии ГИС.
В конце 60-х Бюро переписи США разработало формат GBF-DIME (Geographic Base File, Dual Independent Map Encoding). В этом формате впервые была реализована схема определения пространственных отношений между объектами, называемая топологией, которая описывает, как линейные объекты на карте взаимосвязаны между собой, какие площадные объекты граничат друг с другом, а какие объекты состоят из соседствующих элементов. Впервые были пронумерованы узловые точки, впервые были присвоены идентификаторы площадям по разные стороны линий. Это было революционное нововведение. Формат GBF-DIME позже трансформировался в TIGER. Важными лицами этого
процесса  явились математик Джеймс Корбетт (James Corbett), программисты Дональд Кук (Donald Cooke) и Максфилд (Maxfield). Карты в формате GBF-DIME в течение 70х годов были сформированы для всех городов Соединенных Штатов. Эту технологию по сегодняшний день использует множество современных ГИС. Многие важные идеи, касающиеся ГИС, возникли в стенах Лаборатории компьютерной графики и пространственного анализа Гарварда. Из этой лаборатории вышло несколько ключевых фигур ГИС индустрии: это Говард Фишер (Howard Fisher) – основатель лаборатории и программист Дана Томлин (Dana Tomlin), заложившая основы картографической алгебры, создав знаменитое семейство растровых программных средств Map Analysis Package - MAP, PMAP, aMAP. Наиболее известными и хорошо зарекомендовавшими себя программными продуктами Гарвардской лаборатории являются:
• SYMAP (система  многоцелевого картографирования);
• CALFORM (программа вывода картографического изображения на плоттер);
• SYMVU (просмотр перспективных (трехмерных) изображений);
• ODYSSEY (предшественник знаменитого ARC/INFO).
Большое влияние на развитие ГИС-технологий оказали теоретические разработки в области географии и пространственных взаимоотношений, а также в развитие количественных методов в географии в США, Канаде, Франции, Англии, Швеции (работы У.Гаррисона (William Garrison), Т.Хагерстранда (Torsten Hagerstrand), Г.Маккарти (Harold McCarty), Я.Макхарга (Ian McHarg).
В завершении этого краткого экскурса в историю  ГИС отметим старейшие компании, основанные в 1969 году, которые являются и по сей день крупнейшими разработчиками ГИС – это ESRI и Intergraph. Эти две компании являются производителями самых популярных в США и в мире геоинформационных систем – так, вдвоем они производят ровно половину ГИС, используемых в США. Начиная с 90-х гг. прошлого столетия, эти фирмы активно осваивают российский рынок ГИС.

1.4. Сферы и уровни использования ГИС

ГИС используются для решения разнообразных задач, основные их которых можно сгруппировать следующим образом:
    поиск и рациональное использование природных ресурсов;
    территориальное и отраслевое планирование и управление размещением промышленности, транспорта, сельского хозяйства, энергетики, финансов;
    обеспечение комплексного и отраслевого кадастра;
    мониторинг экологических ситуаций и опасных природных явлений, оценка техногенных воздействий на среду и их последствий, обеспечение экологической безопасности страны и регионов, экологическая экспертиза;
    контроль условий жизни населения, здравоохранение и рекреация, социальное обслуживание, обеспеченность работой и др.;
    обеспечение деятельности органов законодательной и исполнительной власти, политических партий, движений, средств массовой информации;
    обеспечение деятельности правоохранительных органов и силовых структур;
    научные исследования и образование;
    картографирование (комплексное и отраслевое): создание тематических карт и атласов, обновление карт, оперативное картографирование.
Разнообразие сфер использования ГИС порождает множественность их видов и типов, разнящихся по тематике, пространственному охвату, назначению. Принято различать следующие территориальные уровни ГИС и соответствующие им масштабы.

1.5. Классификация ГИС

ГИС системы разрабатываются с целью решения научных и прикладных задач по мониторингу экологических ситуаций, рациональному использованию природных ресурсов, а также для инфраструктурного проектирования, городского и регионального планирования, для принятия оперативных мер в условиях чрезвычайных ситуаций др.
Множество задач, возникающих в жизни, привело  к созданию различных ГИС, которые  могут классифицироваться по следующим  признакам:
      По  функциональным возможностям:
- полнофункциональные  ГИС общего назначения;
- специализированные ГИС ориентированы на решение конкретной задачи в какой либо предметной области;
- информационно-справочные  системы для домашнего и информационно-справочного  пользования.
Функциональные  возможности ГИС определяются также  архитектурным принципом их построения:
- закрытые  системы - не имеют возможностей  расширения, они способны выполнять  только тот набор функций, который  однозначно определен на момент  покупки.
- открытые  системы отличаются легкостью  приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).
По  пространственному (территориальному) охвату:
- глобальные (планетарные);
- общенациональные;
- региональные;
- локальные  (в том числе муниципальные).
По  проблемно-тематической ориентации:
- общегеографические;
- экологические  и природопользовательские;
- отраслевые (водных ресурсов, лесопользования,  геологические, туризма и т.д.);
По  способу организации  географических данных:
- векторные;
- растровые;
- векторно-растровые  ГИС.

1.6. Составные части ГИС

Работающая  ГИС включает в себя пять ключевых составляющих:
- аппаратные средства
- программное обеспечение
- данные
- исполнители
- методы
Аппаратные  средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров.
Программное обеспечение ГИС содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической (пространственной) информации. Ключевыми компонентами программных продуктов являются: инструменты для ввода и оперирования географической информацией; система управления базой данных (СУБД); инструменты поддержки пространственных запросов, анализа и визуализации (отображения); графический пользовательский интерфейс (ГИП) для легкого доступа к инструментам.
Данные. Это вероятно наиболее важный компонент ГИС. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД, применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных
Исполнители. Широкое применение технологии ГИС невозможно без людей, которые работают с программными продуктами и разрабатывают планы их использования при решении реальных задач.
 Пользователями  ГИС могут быть как технические  специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники, которым ГИС помогает решать текущие каждодневные дела и проблемы.
Методы. Успешность и эффективность (в том числе экономическая) применения ГИС во многом зависит от правильно составленного плана и правил работы, которые составляются в соответствии со спецификой задач и работы каждой организации.
 

Глава 2. Практическое применение ГИС в ООО «МебельВилль»

Для рассмотрения практического использования ГИС  я взяла компанию, в которой работаю в должности дизайнера, это сеть мебельных салонов «Громада», «МебельВилль», «ГутМебель» (ООО «МебельВилль»). Компания существует более 15 лет. На сегодняшний день
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.