Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Складання плану виробництва при максимальному прибутку. Введення додаткових (фктивних) змнних, як перетворюють нервност на рвност. Розвязування задач лнйного програмування графчним методом та економчна нтерпретаця отриманого розвязку.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 20.11.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


11
КОНТРОЛЬНА РОБОТА
з дисципліни
„Математичне програмування”
Завдання 1

1) Побудувати математичну модель задачі лінійного програмування.
2) Звести дану задачу до канонічного вигляду.
Діва вироби В1 і В2 обробляються послідовно на трьох верстатах. Кожний виріб типу В1 потребує 1 год. для обробки на першому верстаті, 2 год. - на ІІ-му і А год. - на третьому.
Кожний виріб В2 потребує для обробки 2 год, А год. і 3 год. відповідно на І-му, ІІ-му і ІІІ-му верстатах.
Час роботи на першому верстаті не повинен перевищувати 10N год., на ІІ-му - 15N год., на ІІІ-му - 50 год.
Скласти план виробництва при максимальному прибутку, якщо відомо, що продаж одного виробу типу В1 приносить прибуток 5 грн., а типу В2 - 3 грн.
Примітка: А=, тобто А=.
Розв'язання.

Типи
верстатів
Затрати часу, год
Час роботи,
год
В1
В2
І в
1
2
60
ІІ в
2
А
90
ІІІ в
А
3
50
Прибуток, грн
5
3
1) Математична модель задачі.
Позначимо кількість виробів В1 і В2 відповідно х1 та х2.
Цільова функція (величина прибутку), яку потрібно максимізувати
Спеціальні обмеження задачі визначаються обмеженнями часу роботи верстатів і нормативами часу обробки виробів на верстатах. При обсягу випуску виробів В1 і В2 відповідно х1 та х2 і заданих нормативах часу обробки час роботи першого верстату дорівнює
час роботи другого верстату
час роботи третього верстату
Спеціальні обмеження є наступними:
Загальні обмеження задачі витікають з природи економічних змінних і полягають у тому, що вони не можуть мати від'ємні значення, тобто
Отже маємо математичну модель задачі:
за умов
Словесно задача формулюється таким чином: знайти значення змінних х1 та х2, які задовольняють заданій системі обмежень і доставляють максимальне значення цільовій функції Z.
2) У канонічній формі задачі лінійного програмування спеціальні обмеження подаються рівностями. Перехід до канонічної форми здійснюється шляхом введення додаткових (фіктивних) змінних, які перетворюють нерівності на рівності. В даному випадку до першого обмеження вводиться змінна х3, до другого - х4, до третього - х5. Додаткові змінні вводяться зі знаками „+”, оскільки обмеження мають тип „”. Математична модель задачі у канонічній формі:
за умов
Завдання 2

Розв'язати задачу лінійного програмування графічним методом
за умов
Розв'язання.
В декартовій системі координат х1Ох2 будуємо прямі, які визначаються нерівностями системи обмежень. Це прямі ; ; . Кожна пряма ділить площину х1Ох2 на дві половини, в одній з яких виконується відповідна нерівність системи обмежень, а в іншій не виконується. Півплощини, в яких виконуються нерівності системи обмежень позначені штриховою біля прямих. Переріз цих півплощин являє собою область припустимих планів задачі. Це - чотирикутник ОАВС.
Цільова функція визначає сімейство паралельних прямих ліній з різними значеннями параметра z. При z=0 маємо пряму , що проходить через початок координат. Збільшенню значення параметра z відповідає переміщення прямої цільової функції у напрямку, позначеному вектором n+. Безпосередньо з креслення видно, що максимальному значенню параметра z (максимуму цільової функції при заданих обмеженнях) відповідає точка припустимої області, яка є вершиною В чотирикутника ОАВС (це остання точка припустимої області, яка належить прямій цільової функції z при її переміщенні у напрямку збільшення параметра z). Координати (х1, х2) цієї точки є шуканим оптимальним планом задачі.
З креслення визначаємо: .
Отже, оптимальним планом даної задачі є , цільова функція при цьому набуває максимального значення .
Завдання 3

Розв'язати систему лінійних рівнянь методом повного виключення
змінних з використанням розрахункових таблиць.
Будуємо розрахункову таблицю і обираємо за ведучий елемент а21=1 (у таблиці виділений):
х1
х2
х3
B
3
-2
2
-3
1
4
-1
0
4
-1
4
6
Перераховуючи елементи таблиці, виключаємо з першого і третього рівнянь (перший і третій рядки таблиці) змінну х1, отримуємо
х1
х2
х3
B
0
-14
5
-3
1
4
-1
0
0
-17
8
6
Обираємо за ведучий елемент а12=-14 (у таблиці виділений) і, виконавши перерахунок, виключаємо змінну х2 з другого і третього рівнянь.
Отримуємо таблицю
х1
х2
х3
B
0
1
-5/14
3/14
1
0
3/7
-6/7
0
0
27/14
135/14
Обираємо за ведучий елемент а33=-27/14 (у таблиці виділений) і, виконавши перерахунок, виключаємо змінну х3 з першого і другого рівнянь. Отримуємо таблицю
х1
х2
х3
B
0
1
0
2
1
0
0
-3
0
0
1
5
З останньої таблиці, яка відповідає системі рівнянь з повністю виключеними змінними, знаходимо розв'язок системи рівнянь:
Завдання 4

1) Ро и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.