На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Теория равновесия и относительные цены в России на современном этапе

Информация:

Тип работы: курсовая работа. Добавлен: 26.06.2012. Сдан: 2011. Страниц: 11. Уникальность по antiplagiat.ru: < 30%

Описание (план):


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО  ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ
Институт  менеджмента и бизнеса 
 

Кафедра ЭТ 
 
 
 
 

КУРСОВАЯ  РАБОТА
по дисциплине «Микроэкономика»
на тему «Теория равновесия и относительные  цены в России на современном этапе» 
 
 

                Выполнил: студент гр
                                                   
                Научный руководитель:. 
                 
                 
                 
                 
                 
                 

Тюмень 2010
Оглавление
Введение………………………………………………………………………….…..3
Глава 1. Понятие, типы и модели равновесия
1.1. Понятие рыночного  равновесия и его статическая  модель………………….5
1.2.Модель Вальраса..………….....…….……………….…………………………10
1.3. Паутинообразная  модель. Существование, стабильность  и единственность равновесия……………………………………………………………...…..……….16
1.4. Подходы Вальраса  и Маршал…………………….…………………………...19
Глава 2. Равновесие и относительные цены
2.1.Общее равновесие……………………………………………………………...22
2.2.  Парето-эффективность  и общее равновесие………………………………...24
2.3. Изменение  относительных цен в России  за 2006-2009гг………….………..31
Заключение………………………………………………………………………….36
Список библиотечной  литературы……………………………………………….37
 


     Введение
     Представленная  работа посвящена теме «Теория общего равновесия и относительные цены в России на современном этапе».
     Целью исследования является рассмотрение особенностей теории общего равновесия, а так же оценка относительных цен в России на современном этапе. В рамках достижения поставленной цели были поставлены следующие задачи:
    1. Изучить  модели равновесия;
    2. Изучить  основные проблемы, связанные с теорией общего равновесия;
    3. Проанализировать  относительные цены в России  за период с 2005 по
2008 гг., как характеристику  рыночного равновесия.
     Теория  общего равновесия - важный раздел микроэкономики, поскольку система совершенно конкурентных рынков безусловно обладает замечательным свойством - она обеспечивает эффективное размещение ресурсов в экономике.
     Высокая значимость темы «Теория равновесия и относительные цены в России на современном этапе» определяет несомненную  актуальность данного исследования. В экономической теории ставится вопрос о механизме достижения общего равновесия. Если на пути к общему равновесию выявятся какие-либо препятствия, то хозяйство будет находиться в состоянии неравновесия при излишках и дефицитах на отдельных рынках. Эта проблема имеет такое серьезное значение, что в XX веке из необходимости ее разработки сформировалась целая ветвь экономической науки макроэкономика.
      Проблема, которую пытается разрешить теория общего равновесия, заключается в  том, может ли рынок обеспечить такое поведение участников, при котором окажется возможным эффективное распределение экономических ресурсов.
     Достижение  общего  равновесия на рынке предполагает, что все поступающие на него производственные ресурсы нашли своего покупателя, а предельный доход собственников ресурсов, формирующий спрос, равен предельному продукту каждого ресурса, формирующего предложение. Общее равновесие в рыночном хозяйстве характеризуется некоторым набором относительных цен, которые зависят от объективных условий производства и предпочтений потребителей.
     В качестве информационной базы для написания  работы послужили базовая учебная  литература, фундаментальная теория, результаты практических исследований видных отечественных и зарубежных авторов, статьи и обзоры в специализированных и периодических изданиях, посвященных тематике.
     Объектом  исследования выступает теория равновесия и ее основные модели. Предмет исследования – относительные цены в России на современном этапе, как характеристика общего равновесия рыночного хозяйства.
 


     Глава 1. Понятие, типы и модели равновесия.
     1.1. Понятие рыночного равновесия  и его статистическая модель. Модель Вальраса.
     В микроэкономике используются модели двух типов - оптимизационные, для изучения поведения отдельных экономических субъектов (потребителей, производителей, собственников ресурсов) и равновесные, для изучения взаимоотношений между экономическими субъектами (или группами их). В свою очередь равновесные модели подразделяются на модели частичного, многорынкового и общего равновесия. Первые используются для анализа отдельных рынков конкретных, как правило однородных, благ или факторов производства. В других случаях целесообразно исследование рынков неоднородной продукции или ресурсов, например рынка сельхозпродукции или труда в целом. Здесь необходимо использовать модели многорынкового равновесия.
     Дадим определение рыночному равновесию:  рыночное равновесие - ситуация на рынке, при которой нет тенденции  к изменению рыночной цены или  объема продаваемых благ. Рыночное равновесие устанавливается, когда цена приводится к уровню, который уравнивает объем спроса и объем предложения.
     В состоянии равновесия рынок сбалансирован, ни у продавцов, ни у покупателей  нет внутренних побуждений к его  нарушению. Напротив, при любой другой цене, отличной от равновесной цены, рынок не сбалансирован, а у покупателей и продавцов имеются эффективные стимулы к изменению сложившейся ситуации.
     При анализе рыночного равновесия используют статическую и динамическую модели.
     В статических моделях фактор времени не учитывается. Они представляют собой как бы мгновенные "фотоснимки" динамических процессов. Сравнение таких мгновенных состояний называют методом сравнительной статики.
     Метод сравнительной статики можно  проиллюстрировать анализом сдвига равновесия.
     
     Рис.1.1. Сдвиг равновесия
     На  рис. 1.1.1,а сдвиг линии спроса приводит к росту равновесной цены с P1 до P2 при одновременном увеличении равновесных объемов с Q1 до Q2.  На рис. 1.1.1,б сдвиг линии предложения влево ведет к повышению равновесной цены при одновременном сокращении равновесного объема
     Косвенное включение фактора времени в  данном методе становится возможным  посредством учета различий в  скорости приспособления предложения  к изменениям в спросе.
     Существует  три периода.
     1) Мгновенный период (все факторы производства рассматриваются как постоянные).
     Продавец  лишен возможности приспособить объем предложения к объему спроса, поскольку количество производственных ресурсов и интенсивность их использования  заданы. Многое зависит от природы данного товара. Если товар скоропортящийся, линия предложения будет перпендикулярна оси абсцисс. В этом случае равновесная цена совпадает с ценой спроса, тогда как объем продаж однозначно задан объемом предложения и не зависит от функции спроса.
     
     Рис.1.1.2. Равновесие в мгновенном периоде: а) товары, не подлежащие хранению; б) товары, подлежащие хранению
     Если  товар не подлежит порче и может  быть сохранен, то линия предложения  может быть представлена состоящей  из двух сегментов: одного, имеющего положительный наклон, и второго, представленного вертикальным отрезком (рис. 1.1.2,а). Если же хранение избытка затруднено или связано с высокими затратами, не возмещаемыми ожидаемым повышением цены, соответствующее количество товара может быть распродано по бросовым ценам. Например,  распродажа капусты накануне приближения заморозков.
     2) Короткий период (одна группа  факторов рассматривается как  постоянная, а другая как переменная).

    Рис.1.1.3. Равновесие  коротком периоде.
     Линия предложения (рис. 1.1.3) также состоит из двух сегментов. Первый, имеющий положительный наклон, ограничен по оси абсцисс точкой, соответствующей производственной мощности QK. Второй участок кривой предложения представлен вертикальным отрезком, что указывает на невозможность выйти в условиях короткого периода за пределы, ограниченные наличной производственной мощностью. Вплоть до этой границы равновесный объем и цена определяются пересечением линий спроса и предложения, а за ее пределами, как и в мгновенном периоде, цена определяется спросом, тогда как объем предложения  -  размером производственных мощностей.
     2)Длительный  период (факторы производства рассматриваются  как переменные).
     Производитель может не только варьировать интенсивность  использования производственных мощностей, но и изменять масштабы производства. На рис.1.1.4 представлены три ситуации, возможные в длительном периоде. В первом случае, когда изменение масштаба производства происходит при неизменных затратах, рост равновесного объема происходит без изменения равновесной цены. Во втором, когда изменение масштаба производства происходит при возрастающих затратах рост равновесного объема сопровождается и ростом равновесной цены. В третьем, когда изменение масштаба производства происходит при снижающихся затратах, рост равновесного объема сопровождается снижением равновесной цены.
     
     Рис. 1.1.4.Равновесие в длительном периоде: а – при неизменных затратах; б – при возрастающих затратах; в- при снижающихся затратах
     На  рис. 1.1.5 показано приспособление предложения  к изменившемуся спросу в длительном периоде. Здесь S0S0 -  линия предложения, a D0D0 - линия спроса в коротком периоде. По графику видно, что спрос и предложение сбалансированы при цене Р0 на уровне полного использования производственной мощности QK.
     
     Рис.1.1.5.Переход  от короткого к длительному периоду.
     Допустим, что спрос внезапно вырос и  представлен теперь линией D1D1, лежащей правее линии D0D0. Поскольку резерв мощности отсутствует, новое равновесие достигается исключительно за счет повышения цены до P1 при сохранении, естественно, прежнего объема продаж QK. В длительном периоде масштаб производства увеличивается за счет ввода новых мощностей, и линия предложения смещается в положение S1S1 (при возрастающих затратах). Новое равновесие достигается в точке Е2 при цене Р2 более высокой, чем Р0, но ниже, чем Р1, и объеме производства Q2 большем, чем QK-
     Различие  ситуаций равновесия, представленных на рис. 1.1.5, важно при оценке уровней  цен на различных рынках. Например, высокие цены на легковые автомашины в России оказываются близкими к равновесным, если рассматривать их с точки зрения короткого периода, когда производственные мощности по выпуску их фиксированы, а коэффициент их использования высок. Однако они представляются завышенными с позиций длительного периода, в течение которого возможен рост мощностей, строительство новых предприятий. 

     1.2.Модель Вальраса
     Равновесные цены и количества определяются с  учетом эффекта обратной связи , который  отражает изменение частичного равновесия на данном рынке  в результате изменений, возникших на сопряженных рынках под влиянием первоначальных изменений на данном рынке.
     Взаимосвязь товарных рынков может быть записана системой уравнений. Основателем теории общего экономического равновесия справедливо  считают известного швейцарского экономиста Леона Вальраса (1834—1910), который показал, что общее равновесие совместимо с такой экономической системой, в которой на каждом рынке выполняются условия совершенной конкуренции, поэтому его модель часто называют моделью общего конкурентного равновесия.
     В модели Вальраса общее равновесие - результат решения системы уравнений, неизвестными в которых являются цены всех благ и факторов производства и их количества, покупаемые и продаваемые  каждым потребителем и производителем.
     Модель  является попыткой представить все уравнения, описывающие общее равновесие в хозяйстве, чтобы сравнить число этих уравнений с числом переменных, которые они включают. Если число уравнений будет равно числу переменных, то общее равновесие возможно.
     Итак, вообразим себе хозяйство, обладающее следующими характеристиками. На любом рынке этого хозяйства существует совершенная конкуренция. Предполагается также отсутствие внешних эффектов и общественных благ.
     В хозяйстве существует m видов потребительских  благ, каждое из которых производится в условиях совершенной конкуренции множеством независимых фирм. Каждая фирма максимизирует свою прибыль.
     В хозяйстве имеется n видов ресурсов, которые находятся в собственности  потребителей и предоставляются  последними фирмам по некоторым ценам. Каждый потребитель может владеть любым числом видов ресурсов и не обязательно предлагает к продаже все количество имеющегося ресурса. Полученный доход потребители распределяют между разными потребительскими благами, максимизируя свои функции полезности.
     Таким образом, всего в хозяйстве существует n рынков ресурсов и m рынков потребительских  благ. На каждом рынке существуют две  переменные - цена и количество. На рынке  отдельного блага это Pi и Qi, а на рынке  отдельного ресурса - pj и qj. Всего у  нас получается 2n + 2m неизвестных.
     Определим теперь число уравнений, описывающих  хозяйственную систему. Существуют четыре группы уравнений, описывающих  различные типы функциональных зависимостей в хозяйстве.Первые две группы описывают  равновесие потребителей, вторые две задают равновесие производителей.
     1) Уравнения потребительского спроса.
     Спрос отдельного потребителя на каждое благо  определяется как функция цен  всех потребительских благ (P1 ... Pm) и  цен всех ресурсов (p1 ... pn). Заметим  сразу, что этим подчеркиваются два типа общих взаимосвязей в хозяйстве - зависимость спроса на отдельное благо от цен других благ и от цен ресурсов.
     Так как спрос каждого потребителя  зависит от этих переменных, можно  сказать, что рыночный спрос определяется как сумма индивидуальных спросов:
     Qi = f(P1 ... Pm; p1 ... pm),  (1.2.1)
     где Qi - объем производства блага; f(P1 ... Pm; p1 ... pn) - суммарный спрос всех потребителей на рынке блага i.
       Поскольку у нас m рынков благ, мы имеем ровно m таких уравнений  спроса.
     2) Уравнения предложения ресурсов.
     Поскольку потребители должны также выбрать  объем предложения ресурсов, которыми они обладают, мы должны записать их функции предложения. Индивидуальное предложение ресурса также зависит  от цен потребительских благ (P1 ... Pm) и цен всех ресурсов (p1 ... pn) - именно два ряда этих значений позволяют оценить выгоды от продажи ресурсов. Поскольку индивидуальное предложение каждого потребителя определяется аналогично, можем представить функцию рыночного предложения отдельного ресурса как функцию от всех цен в хозяйстве и записать следующее равенство:
      qi = ?(P1 ... Pm; p1 ... pn),  (1.2.2)
     где qj - объем продаж на рынке ресурса j; (P1 ... Pm; p1 ... pn) - функция предложения ресурса j всеми потребителями хозяйства. Поскольку в хозяйстве существует n рынков ресурсов, имеем ровно n таких функций предложения.
     Заметим, что один вектор цен (P1 ... Pm; p1 ... pn) задает объемы спроса и предложения сразу на всех рынках благ и ресурсов, так как выбор отдельного потребителя заключается в одновременном определении своего спроса и предложения на всех рынках хозяйства при заданных ценах.  Пропорциональное изменение всех цен не вызовет изменения спроса и предложения на всех рынках. Например, если и цены благ, и цены ресурсов повысятся ровно в 2 раза, ни у одного потребителя не будет стимула для изменения своего поведения.
     3) Уравнения равновесия в отрасли. 
     Мы  не можем записать функции предложения  на рынке каждого блага на основе функции предложения отдельной  фирмы в силу предположения о  фиксированных коэффициентах. Ведь фиксированные коэффициенты означают отсутствие экономии от масштаба и отсутствие убывающей предельной производительности. Функция предложения любого блага в этой ситуации должна иметь бесконечную эластичность, а размер фирмы оказывается неопределен.
     Но  в этой ситуации мы можем проигнорировать  функции предложения как таковые  и записать другое условие равновесия отдельного производителя на отдельном  рынке - равенство прибыли нулю. Поскольку  на всех рынках существует совершенная  конкуренция, общее равновесие будет достигнуто в том случае, если прибыльность производства всех благ будет одинакова и равна нулю. Или, что то же самое, средние затраты будут равны цене блага.
     Pi = p1ai1 + p2ai2 +...+ pnain,  (1.2.3)
т. е. цена блага i распадается на затраты по приобретению ресурсов для производства единицы блага. Поскольку каждое благо должно производиться при аналогичных условиях, мы имеем m таких уравнений. Здесь также существенно лишь соотношение цен: их пропорциональное изменение не нарушает равенства (1.2.3).
     4) Уравнения спроса на ресурсы.  При определении спроса на  ресурсы мы сталкиваемся с  той же проблемой, что в предыдущем  пункте. Поскольку производственные  коэффициенты постоянны, функции  спроса на ресурсы будут иметь  бесконечную эластичность. Но, как и в предыдущем случае, мы можем схитрить и записать условие общего равновесия - спрос на каждый ресурс будет предъявляться в таком количестве, которое необходимо для производства равновесного набора благ согласно существующим производственным коэффициентам. Формально это тоже функция спроса на ресурс, в которой в качестве аргументов записаны не цены благ и ресурсов, а уже выбранные количества производимых благ.
     Поэтому мы можем записать:
      qj = a1jQ1 + a2jQ2 +...+ amQm,  (1.2.4)
     где Qi - объем производства блага i.
       Поскольку это равенство должно  выполняться для всех ресурсов, мы имеем еще n таких уравнений. 
     Поскольку в данном случае мы анализируем относительные  цены и абстрагируемся от их абсолютных значений, для измерения цен нам  необходимо выбрать одно благо, которое будет служить счетной единицей. Цена этого блага принимается равной единице и поэтому не является неизвестной. Таким образом, число неизвестных равно 2n + 2m - 1.
     Теперь  мы можем подвести итог. Всего в  нашей системе имеется 2n + 2m уравнений и 2n + 2m - 1 неизвестных. Как видно, неизвестных меньше, чем уравнений, и это говорит о том, что одно из уравнений оказывается лишним. Если нам удастся исключить его из системы, доказав его зависимость от остальных, тогда общее равновесие оказывается возможным.
     Исключить одно уравнение действительно можно  на основе следующего соображения. В  условиях общего равновесия весь доход, полученный потребителями от продажи  ресурсов, расходуется на рынках потребительских  благ. Это значит, что общая стоимость ресурсов должна быть равна общей стоимости благ. Поэтому в условиях общего равновесия, зная цены и количества на всех рынках ресурсов и благ, кроме рынка блага, выбранного в качестве счетной единицы, мы можем рассчитать объем спроса на этом рынке остаточным способом. Поэтому одно из уравнений спроса оказывается зависимым от всех остальных уравнений в системе, и его можно исключить. Остается 2n + 2m - 1 независимых уравнений.
     Таким образом, число уравнений оказывается  равным числу неизвестных, и это означает возможность достижения общего равновесия в хозяйстве.
     Важно рассмотреть другие проблемы, которые  будут касаться любой модели общего равновесия.
     1. Достаточность. Необходимость равенства  числа неизвестных числу уравнений  для достижения общего равновесия в хозяйстве не означает достаточность этого условия. Во-первых, если функции нелинейны, то у системы уравнений возможно несколько решений. Это означает существование нескольких точек равновесия. Во-вторых, в результате решения этой системы уравнений мы можем получить отрицательные цены и количества для отдельных благ, которые не будут иметь экономического смысла, и общее равновесие при таких абсурдных ценах и количествах будет невозможным.
     Таким образом, cуществует единственное состояние общего равновесия с неотрицательными ценами и количествами, если выполняются два условия:
      1) существует постоянная или убывающая  отдача от масштаба;
      2) для любого блага существует  одно или несколько других  благ, находящееся с ним в отношении  замещения. 
     2. Механизм достижения. Для доказательства достижения возможности общего равновесия необходимо определить механизм достижения равновесных цен и объемов на каждом рынке. Сам Вальрас использовал для доказательства достижения равновесия теорию нащупывания, которая заключается в следующем.
     Сначала необходимо ответить на вопрос, будет  ли система двигаться в сторону  равновесных цен и объемов. Это  доказывается "от противного": если представить себе, что вначале  реализуется некоторый произвольный вектор цен, который не соответствует равновесному, это будет означать излишек на одних рынках и дефицит на других. Это состояние приведет к росту цен на тех рынках, где имеется дефицит, и снижению цен на тех рынках, где наблюдается излишек. Изменение цен будет продолжаться до тех пор, пока не будет "нащупан" равновесный вектор цен.
 


     1.3.Паутинообразная  модель. Существование, стабильность  и единственность равновесия.
     В связи с моделью общего равновесия возникают три основные проблемы: его существования, единственности и стабильности.
     Анализ  экономического равновесия с точки  зрения его устойчивости требует  от нас определения динамики изменения  цены во времени (динамическая модель). Рассмотрим в качестве примера одну из простейших динамических моделей - паутинообразную модель.
     Допустим, что объем спроса зависит от уровня цен текущего периода, тогда как  объем предложения - от уровня цен  предыдущего периода:
     QSt = S(Pt-1), (1.3.1)
     где QSt - объем предложения товара в период t; Pt-1 - фактическая цена товара в период t-1.
     
     Рис.1.3.1. Паутинообразная модель
     На  рис. 1.3.1 линия SS характеризует зависимость  объема предложения товара от фактической  цены этого товара в предыдущем, периоде. Линия DD характеризует зависимость  объема спроса на товар от цены товара в данном, периоде:
     QDt = D(Pt), (1.3.2)
     где QDt- объем спроса на товар в период t; P - цена товара в период t.
     Пусть цена в некоторый начальный период t = 0 была равна P0 , по ней было куплено Q0 единиц товара. Тогда в следующем периоде t = 1 производители выбросят на рынок Q1 единиц товара. Этот объем предложения будет в свою очередь реализован по цене P1 и т. д. Система стремится к положению равновесия в точке с координатами (P', Q'), т. е. равновесие является устойчивым.
     Из  данного графического анализа можно  сделать следующий вывод: зная динамику изменения цены за несколько предшествующих периодов, можно получить гораздо более точное представление о будущих ценах, чем если просто распространять фактическую цену данного периода на следующий период. Простейшая паутинообразная модель является хорошей иллюстрацией динамического подхода к проблеме устойчивости рыночного равновесия, позволяя понять некоторые особенности этого подхода.
     Анализ  проблем единственности и существования  равновесия требует использования  сложного математического аппарата, в частности элементов топологии, поэтому ограничимся иллюстрацией этих проблем на примере частичного равновесия с использованием кривых спроса и предложения (левые части рис. 15.13-15.16) и соответствующих им кривых избыточного спроса (правые части рис. 15.13-15.16).
      
     Рис.1.3.2. Равновесие на рынке
     На  совершенно конкурентном рынке равновесие существует, если при некоторой положительной  цене (Р’) объем спроса равен объему предложения (т.Е). В этом случае отсутствует  какой-либо (положительный или отрицательный) избыток спроса, а само равновесие можно определить как отсутствие избытка спроса при определенной цене.
      
     Равновесие  стабильно, если кривая спроса пересекает кривую предложения сверху. В этом случае избыток спроса действует  в сторону снижения цены, а избыток предложения, или отрицательного спроса, в сторону ее снижения. Соответственно кривая избыточного спроса имеет отрицательный наклон и в равновесии, при QD = QS, ED(Pi
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.