На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Основные понятия теории полуколец. Определение полукольца. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Свойства положительных полуколец.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 08.08.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


16
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Положительные и ограниченные полукольца
Выполнил:
студент V курса математического факультета
Ворожцов Вячеслав Андреевич _____
Научный руководитель:
кандидат физико-математических наук, доцент кафедры алгебры и геометрии В.В. Чермных ________
Рецензент:
доктор физико-математических наук, профессор кафедры алгебры и геометрии Е.М. Вечтомов _______
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005
Содержание
Введение 3
Глава 1. Основные понятия теории полуколец 4
1.1. Определение полукольца. Примеры. 4
1.2. Дистрибутивные решетки 5
1.3. Идеалы полуколец 6
Глава 2 Положительные и ограниченные полукольца. 7
2.1. Определение и примеры положительных и ограниченных полуколец 7
2.2. Основные свойства положительных и ограниченных полуколец 7
Библиографический список 16
Введение
Теория полуколец - это раздел современной алгебры, обобщающий как кольца, так и дистрибутивные решетки. Понятие полукольца возникло в 30-х годах прошлого столетия. Как самостоятельная теория полукольца начали изучаться в 50-е годы. Особенно интенсивно теория полуколец развивается последние 20 лет, что вызвано не только теоретическим интересом, но и многочисленными ее приложениями.
Целью данной работы является изучение классов положительных и ограниченных полуколец, рассмотрение основных свойств данных алгебраических объектов, часть из которых доказывается автором работы самостоятельно; приведены примеры полуколец.
Работа состоит из 2 глав. В первую главу вошли основные определения и факты, на которые опирается эта работа. Вторая - основная часть всей работы, в ней рассмотрены определения и свойства положительных и ограниченных полуколец, приведены примеры, доказаны некоторые теоремы.
Глава I. «Основные понятия теории полуколец».
1.1. Определение полукольца. Примеры.
Определение полукольца: Непустое множество S с бинарными операциями + и · называется полукольцом, если выполняются следующие аксиомы:
1. (S,+) - коммутативная полугруппа с нейтральным элементом 0;
· Ассоциативность: ;
· Коммутативность: ;
· Существование нейтрального элемента: .
2. (S,·) - полугруппа:
· Ассоциативность: ;
3. Умножение дистрибутивно относительно сложения:
· левая дистрибутивность: а(в+с)=ав+ас;
· правая дистрибутивность: (а+в)с=ас+вс.
4. Мультипликативное свойство 0:
· .
Эта аксиоматика появилась в 1934 году и ее автором является Вандовер.
Полукольцо S называется коммутативным, если операция в нем коммутативна: .
Полукольцо S называется полукольцом с единицей, если в нем существует нейтральный элемент по умножению, который называется единицей (1):
Примеры полуколец:
1. <N,+,·>, где N - множество неотрицательных целых чисел с обычными операциями + и ·;
2. <{0},+,·> - тривиальное полукольцо;
3. Двухэлементные полукольца:<Z2 ,+,·>, <В,+,·> (в В 1+1=1);
4. Множество матриц с элементами из полукольца N и операциями + и ;
5. Множества N, Z, Q+, Q, R+, R и введенных на них различных комбинаций операций: обычные сложение и умножение, максимум и минимум двух чисел, НОД и НОК, когда они определены.
Полукольцо с импликацией называется мультипликативно (аддитивно) сократимым.
Полукольцо, в котором выполняется равенство , называется мультипликативно (аддитивно) идемпотентным.
1.2. Дистрибутивные решетки.
Пусть L - произвольное множество. Введем на L отношение положив,
.
Отношением порядка называется рефлексивное, транзитивное, антисимметричное бинарное отношение на множестве L, при этом множество L назовем частично упорядоченным множеством.
Отношение на множестве L является отношением порядка.
Пусть M - непустое подмножество частично упорядоченного множества L . Нижней гранью множества M называется такой элемент , что для любого . Нижняя грань m множества M называется точной нижней гранью, если , где n - произвольная нижняя грань множества M. Двойственным образом определяется точная верхняя грань.
Частично упорядоченное множество L называется решеткой, если любые два элемента имеют точную верхнюю и точную нижнюю грани; решетка называется дистрибутивной, если в ней выполняются дистрибутивные законы:
Кроме этого определения существует еще одно определение дистрибутивной решетки. Алгебраическая система L с двумя бинарными операциями сложения + и умножения • называется решеткой, если (L, +) и (L,•) являются идемпотентными коммутативными полугруппами и операции связаны законами поглощения
,;
Решетка называется дистрибутивной, если для любых , ограниченной, если она имеет 0 и 1.
1.3. Идеалы полуколец.
Непустое подмножество I полукольца S называется левым (правым) идеалом полукольца S, если для любых элементов a, bI, sS элементы a+b и sa (as) принадлежат I.
Непустое подмножество, являющееся одновременно левым и правым идеалом, называется двусторонним идеалом или просто идеалом полукольца. Идеал, отличный от полукольца S называется собственным. Наименьший из всех (левых) идеалов, содержащий элемент a S, называется главным (главным левым) идеалом, порожденным элементом a. Обозначается (a) или SaS, односторонние Sa и aS - левый и правый соответственно. Множество всех элементов принадлежащих главному идеалу можно записать так .
Собственный идеал M полукольца S называется максимальным (максимальным правым) идеалом, если влечет M=A или A=S для каждого идеала A .
Примерами идеалов могут служить следующие подмножества:
1. {0} - нулевой идеал;
2. S - идеал, совпадающий со всем полукольцом;
3. Идеал на полукольце : ;
4. Главный идеал ограниченной дистрибутивной решетки L, порожденный элементом a: .
Глава II «Положительные и ограниченные полукольца».
2.1. Определение, примеры и основные свойства.
Полукольцо S с 1 называется положительным, если для любого элемента а S элемент а+1 обратим в S, т.е..
Примерами положительных полуколец служат следующие алгебраические системы:
1. ограниченные дистрибутивные решетки;
2. полукольца непрерывных R+ - значных функций;
3. множество всех идеалов полукольца, с операциями сложения и умножения.
Полукольцо S называется ограниченым, если для любого выполняется . Ограниченное полукольцо - частный случай положительного полукольца.
Примеры ограниченных полуколец:
1. ограниченные дистрибутивные решетки;
2. множество всех идеалов полукольца, и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.