На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Применение GNSS в геодезии

Информация:

Тип работы: реферат. Добавлен: 27.06.2012. Сдан: 2011. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Московский  Государственный  университет
им. М.В.Ломоносова
Географический  факультет
Кафедра картографии и  геоинформатики 
 
 

Реферат на тему:
“ Применение GNSS в геодезии” 
 
 
 
 
 
 
 
 
 
 
 

Москва  – 2008
Содержание:
Введение           стр.1
История создания GPS-системы        стр. 1
Состав GPS-системы         стр. 1
ГЛОНАСС           стр. 3
Примеры использования GNSS в геодезии      стр. 4
- Основные принципы определения координат с помощью GPS-системы стр.4
- Факторы снижения точности определения координат    стр. 5
- Режим дифференциальной  коррекции      стр. 7
- Режимы измерения, измеряемые величины      стр. 8
Кодовые псевдодальности        стр. 9
Фазовые измерения         стр. 10
Интегральный  допплер         стр. 10
Изоповерхности, геометрический фактор      стр. 10
WAAS и EGNOS          стр. 11
Этапы создания геодезической  сети       стр. 15
Применение  GNSS в повседневной жизни      стр. 16
Заключение           стр. 20 
 
 
 
 
 
 
 
 
 
 

Введение
 В современной геодезии всё чаще начинают использовать новейшие спутниковые и компьютерные технологии для определения координат местоположения, абсолютных высот в решениях главных геодезических задач и построении карт. Такие технологии могут вполне заменить нивелир или теодолит и избавить геодезиста от долгой полевой трудоёмкой работы, ведь данные всегда нужны в обновлениях, а с помощью теодолита и ручного построения геодезических сетей это не удастся сделать (будет затрачено слишком много времени). Эти задачи можно решить с помощью Глобальных Навигационных Спутниковых Систем (GNSS). Основными системами GNSS на сегодняшний день являются: ГЛОНАСС – отечественная система, GPS – американская система, Галилео – европейская система. В данном контексте целесообразно, по мнению автора, упомянуть об истории, устройстве, и функционировании этих систем (GPS и ГЛОНАСС).

  История создания GPS-системы 

Первые системы  глобального позиционирования GPS (Global Positioning System) разрабатывались исключительно  для военных целей. Глобальная навигационная  система GPS предназначена для передачи навигационных сигналов, которые могут одновременно приниматься во всех регионах мира. Инициатором создания GPS-системы стало Министерство Обороны США. Ее разработка началась в 1973 г., когда Министерство Обороны США перестала устраивать радионавигационная система, состоящая из наземных навигационных систем Loran-C и Omega, и спутниковой системы Transit. Проект создания спутниковой сети для определения координат в режиме реального времени в любой точке земного шара был назван NAVSTAR GPS (NAVigation Satellite Timing And Ranging Global Positioning System — навигационная система определения времени и дальности). Используемая сейчас аббревиатура GPS появилась позднее, когда система стала использоваться не только для военных, но и для мирных целей. Первая штатная орбитальная группировка системы разворачивалась с июня 1989 г. по март 1994 г. На орбиту были выведены 24 навигационных спутника Block II. Окончательно GPS-система была введена в эксплуатацию в 1995 г. В настоящее время она эксплуатируется и обслуживается Министерством Обороны США.

 Состав GPS-системы

В состав GPS-системы  входят 3 основных сегмента: космический, наземный и пользовательский. Космический  сегмент состоит из 28 автономных спутников, равномерно распределенных по орбитам с высотой 20350 км (для полнофункциональной работы системы достаточно 24 спутников). Каждый спутник излучает на 2 частотах специальный навигационный сигнал, в котором зашифровано 2 вида кода. Один из них доступен лишь немногим пользователям, среди которых, конечно же, военные и федеральные службы США. Кроме этих 2 сигналов, спутник излучает и третий, информирующий пользователя о дополнительных параметрах (состоянии спутника, его работоспособности и др.). Параметры орбит спутников периодически контролируются сетью наземных станций слежения (всего 5 станций, находящихся в тропических широтах), с помощью которых (не реже 1-2 раз в сутки): вычисляются баллистические характеристики, регистрируются отклонения спутников от расчетных траекторий движения, определяется собственное время бортовых часов спутников, осуществляется мониторинг исправности навигационной аппаратуры и др. При этом для обнаружения отказов оборудования спутников с помощью наземных станций обычно требуется несколько часов. Третий сегмент GPS-системы — это GPS-приемники, выпускаемые и как самостоятельные приборы (носимые или стационарные), и как платы для подключения к ПК, бортовым компьютерам и другим аппаратам.

      Рис. 1 Схема расположений 24 спутников.
   Основные  характеристики GPS-системы.
Количество  спутников в орбитальной группировке 28
Число орбитальных плоскостей 63
Число спутников в каждой плоскости 48
Высота  орбиты (км) 20350
Наклонение  орбиты (градус) 55
Период  обращения спутников (ч) 12
Масса спутника (кг) 1055
Мощность  солнечных батарей  спутника (Вт) 450
Срок  эксплуатации (лет) 7,5
Поляризация правосторонняя
Погрешность определения 100 (С/А-код); 16 (Р-код)
Погрешность определения 10 (С/А-код); 0,1 (Р-код)
Погрешность определения времени (нc) 340 (С/А-код); 90 (Р-код)
Надежность  навигационных определений (%) 95

 
ГЛОНАСС

Глобальная навигационная  спутниковая система — российская спутниковая система навигации. Первоначально основой системы  должны были являться 24 спутника, движущихся над поверхностью Земли по 3 орбитальным  траекториям, на высоте 19100 км. По новому, корректированному, проекту программы ГЛОНАСС спутниковая группировка системы будет состоять из 30 космических аппаратов, часть из которых будет находиться в рабочем резерве.
Принцип определения  позиции аналогичен американской системе  NAVSTAR. В данный момент используются спутники типов ГЛОНАСС и ГЛОНАСС-М. С началом эксплуатации спутников нового поколения ГЛОНАСС-К планируется повысить точность определения координат до 5 метров. Запуск первого спутника ГЛОНАСС-К будет произведен в 2009 году. Его срок службы будет на 3 года больше его предшественника ГЛОНАСС-М и составит 10 лет.
Первый спутник  ГЛОНАСС был выведен Советским Союзом на орбиту 12 октября 1982 года. 24 сентября 1993 года система была официально принята в эксплуатацию. В 1995 году спутниковая группировка составила 24 аппарата.
   Впоследствии  из-за недостаточного финансирования число работающих спутников сократилось.
   В августе 2001 года была принята федеральная  целевая программа «Глобальная  навигационная система», согласно которой  полное покрытие территории России планировалось  уже? в начале 2008 года, а глобальных масштабов система достигла бы к началу 2010 года. Для решения данной задачи планировалось в течение 2007, 2008 и 2009 годов произвести шесть запусков РН, и вывести на орбиту 18 спутников — таким образом к концу 2009 года группировка вновь насчитывала бы 24 аппарата.
   В конце  марта 2008 года совет главных конструкторов по российской глобальной навигационной спутниковой системе (ГЛОНАСС), заседавший в Российском научно-исследовательском институте космического приборостроения, несколько скорректировал сроки развёртывания космического сегмента ГЛОНАСС. Прежние планы предполагали, что на территории России системой станет возможно пользоваться уже? к 31 декабря 2007 года; однако для этого требовалось 18 работающих спутников, из которых некоторые успели выработать свой гарантийный ресурс и прекратили работать. Таким образом, хотя в 2007 году план по запускам спутников ГЛОНАСС был выполнен (на орбиту вышли шесть аппаратов), орбитальная группировка по состоянию на 27 марта 2008 года включала лишь шестнадцать работающих спутников. По прогнозам, до конца 2008 года из системы будут выведены ещё три старых аппарата.
   На совете главных конструкторов ГЛОНАСС  план развёртывания системы был  скорректирован с той целью, чтобы  на территории России система ГЛОНАСС  заработала хотя бы к 31 декабря 2008 года. Прежние планы предполагали запуск на орбиту двух троек новых спутников «ГЛОНАСС-М» в сентябре и в декабре 2008 года; однако в марте 2008 года сроки изготовления спутников и ракет были пересмотрены, чтобы ввести все спутники в эксплуатацию до конца текущего года. Предполагается, что запуски состоятся раньше на два месяца, и система до конца года в России заработает.

Точность навигации

   В настоящее  время погрешность определения координат составляет порядка 50 метров при использовании КА "Глонасс" и порядка 15 м. для КА "Глонасс-М" с улучшенным бортовым стандартом частоты. К 2010 году планируется обеспечить точность до пяти метров.

Технические средства навигации

 
   Впервые потребительские  спутниковые навигаторы, рассчитанные на совместное использование ГЛОНАСС  и GPS, поступили в продажу 27 декабря 2007 года — это были спутниковые навигаторы Glospace.
   По сообщению  Вести-24, объём производства составляет полторы-две тысячи навигаторов  в месяц, а вопрос обеспечения  цифровыми картами поручено проработать  Роскартографии. По сообщению РИА  Новости от 20 мая 2008 года, важная проблема ГЛОНАСС состоит в нехватке электронных карт, и вице-премьер Сергей Иванов на совещании по развитию транспортной системы поведал, что основные средства, выделяемые на ГЛОНАСС, пойдут именно на эту часть программы — на создание электронных карт.
   В России навигационную  аппаратуру выпускают порядка 10 предприятий (ЗАО «КБ „НАВИС“», ОАО «РИРВ», ОАО «МКБ „Компас“», ФГУП «НИИМА „Прогресс“», ФГУП «НИИ КП» и другие).
   Смешанная ГЛОНАСС/GPS аппаратура профессионального  уровня изготавливается многими производителями, в том числе зарубежными.
Примеры использования GNSS в геодезии. 
   При использовании  GPS приемников в геодезии есть две задачи: непосредственно определение координат (спутник выступает как тело с известными координатами) и определение разности координат (векторов). Измеряются дальности от ИСЗ до приемника. При определении координат используется беззапросный метод при котором на приемник идет постоянная передача данных со спутника. Для определения точных координат XYZ на сфере используются сразу 4 спутника.
Основные  принципы определения  координат с помощью GPS-системы 
   В основе определения координат GPS-приемника  лежит вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные находятся в принятом с GPS-спутника «альманахе»). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется «трилатерацией».
    Если известно расстояние А до одного спутника, то координаты приемника определить нельзя (он может находиться в любой точке сферы радиусом А, описанной вокруг спутника). Пусть известна удаленность В приемника от второго спутника. В этом случае определение координат также не представляется возможным — объект находится на окружности, которая является пересечением двух сфер. Расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены двумя жирными точками на рис. 1). Этого уже достаточно для однозначного определения координат — дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близости от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, для трехмерной навигации теоретически достаточно знать расстояния от приемника до 3 спутников.
   Однако  все не так просто. Приведенные  выше рассуждения рассматривались  для случая, когда расстояния от точки наблюдения до спутников были известны с абсолютной точностью. Разумеется, на практике всегда есть некоторая погрешность измерений («невязка») — например, из-за неточной синхронизации часов приемника и спутника, зависимости скорости света от состояния атмосферы и др. Поэтому для определения трехмерных координат GPS-приемника используются не 3, а, как минимум, 4 спутника. Получив сигнал от 4 (или более) спутников, GPS-приемник ищет точку пересечения соответствующих сфер. Если такой точки нет, процессор GPS-приемника начинает методом последовательных приближений корректировать свои часы до тех пор, пока не добьется пересечения всех сфер в одной точке.
   Координаты  подвижного абонента определяются с  помощью стандартного навигационного GPS-приемника, встроенного в терминал пользователя. Навигационный приемник сигналов для системы GPS состоит из приемного модуля и малогабаритной антенны с малошумным усилителем. Приемный модуль выпускается как в виде автономного устройства со встроенными источниками питания, так и в виде отдельной платы, встраиваемой в абонентский терминал.  
Устройство, как правило, использует собственную миниатюрную антенну и автономно вычисляет географические координаты и всемирное время (UTC) по навигационным сигналам. GPS-приемники чаще всего применяются, если необходимо получить высокую точность координат (погрешность — не более 100 м). Захватив сигнал, навигационный приемник автоматически вычисляет координаты объекта, скорость сигнала и всемирное время, и формирует отчет. Сведения о местонахождении объекта передаются по спутниковым каналам связи в диспетчерский пункт. Навигационные устройства могут различаться по количеству каналов приема, скорости обновления данных, времени вычислений, точности и надежности определения координат.

   Современные GPS-устройства обычно оснащены 6-8 приемниками, что позволяет отслеживать, практически, все навигационные спутники, находящиеся в зоне радиовидимости объекта. Если каналов меньше, чем «наблюдаемых» спутников, автоматически выбирается наиболее оптимальное сочетание спутников. Скорость обновления навигационных данных — 1 с. Время обнаружения зависит от числа одновременно наблюдаемых спутников и режима определения местоположения. Определение навигационных параметров может производиться в двух режимах — 2D (двумерном) и 3D (пространственном). В режиме 2D устанавливаются широта и долгота (высота считается известной). При этом достаточно присутствия в зоне радиовидимости 3 спутников. Время определения координат в режиме 2D обычно не превышает 2 мин. Для определения пространственных координат абонента (режим 3D) требуется, чтобы в соответствующей зоне находились не менее 4 спутников. Гарантируются время обнаружения не более 3-4 мин и погрешность вычисления координат — не более 100 м.
Факторы снижения точности определения  координат 
   На  степень точности вычисления координат влияет ряд факторов, зависящих от процедуры их определения. Их принято называть факторами снижения точности. Как правило, при вычислении координат учитываются следующие стандартные факторы снижения точности:
    Геометрический фактор снижения точности (GDOP) определяет степень влияния погрешностей псевдодальности (характеризующей меру удаленности пользователя от GPS-спутника) на точность вычисления координат. Зависит от положения спутника относительно GPS-приемника и от смещения показания GPS-часов. Различие значений псевдодальности и фактической дальности связано со смещением показаний часов GPS-спутника и потребителя, с задержками распространения и другими ошибками.
    Горизонтальный фактор снижения точности (HDOP) показывает степень влияния точности определения горизонтали на погрешность вычисления координат.
    Фактор снижения точности определения положения (PDOP) — это безразмерный показатель, описывающий, как погрешность псевдодальности влияет на точность определения координат.
    Относительный фактор снижения точности (RDOP), по сути, равен фактору снижения точности, нормализованному на период 60 с.
    Временной фактор снижения точности (TDOP) описывает степень влияния погрешности показаний часов на точность определения координат.
    Вертикальный фактор снижения точности (VDOP) показывает степень влияния погрешности в вертикальной плоскости на точность определения координат.
   Кроме того, основными источниками ошибок, влияющими на точность навигационных  вычислений в GPS-системе, являются:
   1. Погрешности, обусловленные режимом селективного доступа (Selective availa-bility, S/A). Используя данный режим, Министерство Обороны США намеренно снижает точность определения местонахождения для гражданских лиц. В режиме S/A формируются ошибки искусственного происхождения, вносимые в сигнал на борту GPS-спутников с целью огрубления навигационных измерений. Такими ошибками являются неверные данные об орбите спутника и искажения показаний его часов за счет внесения добавочного псевдослучайного сигнала. Величина среднеквадратического отклонения из-за влияния этого фактора составляет, примерно, 30 м.
   2. Погрешности, связанные с распространением радиоволн в ионосфере. Задержки распространения сигналов при их прохождении через верхние слои атмосферы приводят к ошибкам порядка 20-30 м днем и 3-6 м ночью. Несмотря на то, что навигационное сообщение, передаваемое с борта GPS-спутника, содержит параметры модели ионосферы, компенсация фактической задержки, в лучшем случае, составляет 50%.
   3. Погрешности, связанные с распространением радиоволн в тропосфере. Возникают при прохождении радиоволн через нижние слои атмосферы. Значения погрешностей этого вида при использовании сигналов с С/А-кодом не превышают 30 м.
   4. Эфемеридная погрешность. Ошибки обусловлены расхождением между фактическим положением GPS-спутника и его расчетным положением, которое устанавливается по данным навигационного сигнала, передаваемого с борта спутника. Значение погрешности обычно не больше 3 м.
   5. Погрешность ухода шкалы времени спутника вызвана расхождением шкал времени различных спутников. Устраняется с помощью наземных станций слежения или за счет компенсации ухода шкалы времени в дифференциальном режиме определения местоположения.
   6. Погрешность определения расстояния до спутника является статистическим показателем. Он вычисляется для конкретного спутника и заданного интервала времени. Ошибка не коррелирована с другими видами погрешностей. Ее величина обычно не превышает 10 м.  
Следует отметить, что точность определения координат связана не только с прецизионным расчетом расстояния от GPS-приемника до спутников, но и с величиной погрешности задания месторасположения самих спутников. Для контроля орбит и координат спутников и предназначены наземные станции слежения, системы связи и центр управления, подчиняющиеся Министерству Обороны США. Станции слежения постоянно ведут наблюдение за всеми спутниками GPS-системы и передают данные об их орбитах в центр управления, где вычисляются уточненные элементы траекторий и поправки спутниковых часов. Указанные параметры вносятся в «альманах» и передаются на спутники, а те, в свою очередь, отсылают эту информацию всем работающим GPS-приемникам. Кроме того, существует еще множество специальных систем, увеличивающих точность навигации. Например, особые схемы обработки сигнала снижают ошибки от интерференции (взаимодействия прямого спутникового сигнала с отраженным сигналом, например, от зданий).

Режим дифференциальной коррекции
   Уменьшить ошибку в измерении координат (до нескольких см) позволяет режим так  называемой дифференциальной коррекции (DGPS — Differential GPS). Дифференциальный режим позволяет установить координаты с точностью до 5 м в динамической навигационной обстановке и до 2 м — в стационарных условиях. Дифференциальный режим реализуется с помощью контрольного GPS-приемника, называемого базовой станцией. Она располагается в пункте с известными координатами в том же районе, что и GPS-приемник, и дает возможность одновременно отслеживать GPS-спутники. В состав базовой станции входят: измерительный датчик GPS с антенной, процессор, приемник и передатчик данных с антенной. Станция, как правило, использует многоканальный приемник GPS, каждый канал которого отслеживает один видимый спутник. Необходимость непрерывного отслеживания каждого спутника обусловлена тем, что базовая станция должна «захватывать» навигационные сообщения раньше, чем приемники потребителей. Сравнивая известные координаты (полученные в результате прецизионной геодезической съемки) с измеренными координатами, контрольный GPS-приемник вырабатывает поправки, которые передаются потребителям по радиоканалу в заранее оговоренном формате. В свою очередь, потребителю необходим GPS-приемник с антенной, оснащенный процессором и дополнительным радиоприемником с антенной, который и позволяет получать дифференциальные поправки с базовой станции. Поправки, принятые от базовой станции, автоматически вносятся в результаты собственных измерений пользовательских устройств. Для каждого спутника, сигналы которого поступают на GPS-приемник, поправка, полученная от базовой станции, складывается с результатом измерения псевдодальности. Коррекция может осуществляться как в режиме реального времени, так и при «оффлайновой» обработке данных (например, на компьютере).
   Обычно  в качестве базовой станции используется профессиональный GPS-приемник, принадлежащий какой-либо компании, специализирующейся на оказании услуг навигации или занимающейся геодезией. Результаты, полученные с помощью дифференциального метода, в значительной степени зависят от расстояния между объектом и базовой станцией. Применение этого метода наиболее эффективно, когда преобладающими являются систематические ошибки, обусловленные внешними (по отношению к приемнику) причинами (что обычно характерно для GPS-системы). Погрешности S/А и «уходы» шкалы времени компенсируются в дифференциальном режиме полностью. Погрешности из-за задержки сигналов в атмосфере зависят от идентичности условий прохождения сигналов к базовой станции и объекту, а, следовательно, от расстояния между ними. Эти погрешности компенсируются полностью лишь при близком расположении базовой станции и объекта. Эфемеридная погрешность также лучше всего компенсируется при небольшом удалении потребителя от базовой станции. Вседствие всех этих причин базовую станцию рекомендуется располагать не далее 500 км от объекта. Основными заказчиками дифференциальной коррекции обычно являются геодезические и топографические службы. Для частного пользователя DGPS не представляет интереса из-за высокой стоимости и громоздкости оборудования. 

 Режимы измерения, измеряемые величины
   Кодовый режим - это режим, изначально заложенный в систему. Сигнал каждого спутника содержит его эфемериды - данные о  местоположении спутника, позволяющие  вычислить координаты спутника в  земной системе координат. Кроме  того, кодовый сигнал содержит передаваемую каждые шесть секунд временную метку. Момент ухода временной метки со спутника, определенный по часам спутника, подписан на ней. Приемник захватывает сигнал спутника, идентифицирует спутник по коду его сигнала, считывает временную метку и определяет время tr прохождения сигнала от спутника до приемника. Это позволяет вычислить дальность от приемника до спутника. Все было бы именно так, если бы часы приемника и спутника шли синхронно. На самом деле между их показаниями в один и тот же момент времени существует ненулевая разность - относительная поправка часов. Она входит в результат определения дальности. Поэтому в данном случае дальность называют псевдодальностью. Говорят, что в кодовом, навигационном режиме измеряемой величиной является кодовая псевдодальность. Поправку часов приемника относительно часов спутника на момент наблюдений определяют как неизвестную величину из обработки результатов этих наблюдений.
   Таким образом, для каждого пункта имеется не три неизвестных - три координаты пункта - а четыре неизвестных: три координаты и поправка часов приемника. Следовательно, для мгновенного определения местоположения необходимо, чтобы на антенну приемника одновременно приходили сигналы не менее чем от четырех спутников системы. Созвездие спутников системы обеспечивает это требование.
   Фазовый режим - это режим высокоточных геодезических  измерений. В нем одновременно участвуют  по крайней мере два приемника. В  этом режиме получают координаты вектора  базы, то есть разность координат пунктов, на которых установлены антенны спутниковых приемников. Ошибка определения вектора базы составляет от нескольких миллиметров до нескольких сантиметров. Измерения выполняют на несущей частоте сигнала спутника, освобожденного от кода процедурой квадратирования. Измеряемой величиной является мгновенная разность фаз сигнала спутника и сигнала генератора приемника. Здесь уместно сказать о терминах абсолютные и относительные определения. По более или менее сложившейся терминологии под абсолютными определениями понимают определение координат пункта, то есть работу в кодовом навигационном режиме. Под относительными определениями понимают определение местоположения одного пункта относительно другого - твердого, исходного пункта. Таков разностный фазовый режим геодезических измерений. Относительными определениями можно также назвать дифференциальный навигационный кодовый режим, когда местоположение и вектор скорости подвижного носителя определяют относительно дифференциальной станции.
   Допплеровский режим, точнее режим интегрального допплера, является как бы побочным по отношению к фазовому. Допплеровская частота пропорциональна скорости изменения фазы, поэтому допплеровскую частоту получают попутно с измерением фазы, без каких-либо дополнительных затрат. Несмотря на «бесплатность» этот режим дает богатую информацию о местоположении пункта. Следует напомнить, что первые спутниковые радионавигационные системы были исключительно допплеровскими.
   Как сказано, режимы наблюдений неразрывно связаны  друг с другом. Геодезиста более  всего интересует высокоточный фазовый режим, однако приближенные значения координат пунктов, необходимые для уравнивания, он получает из кодовых и допплеровских измерений. Перемещение по объекту и поиск исходных пунктов также очень облегчает использование кодового навигационного режима. Далее рассмотрим измеряемые величины более детально.

1. Кодовые псевдодальности

   Каждый  спутник системы излучает несущие  колебания с длиной волны около 20 сантиметров, манипулированные по фазе кодовыми последовательностями. Здесь  скажем, что все спутники GPS работают на одних и тех же несущих частотах, но каждому спутнику присущ его индивидуальный код. Спутниковый приемник генерирует копии кода каждого спутника и идентифицирует спутники именно по форме кода. Сразу после включения приемника он начинает захват сигналов спутников. Другими словами, приемник выполняет корреляционную обработку сигнала спутника и генерируемых этим приемником копий кодов, перебирая эти копии. Отличие функции корреляции от нуля означает, что спутник идентифицирован, а его сигнал - захвачен.
   После захвата  сигнала первого же спутника приемник начинает скачивать кодовую информацию, содержащуюся в нави
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.