На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Характеристика послдовност незалежних випробувань, застосування формул Бернулл, Пусона, локальної та нтегральної теореми Лапласа. Аналз моментв бномального розподлу. Оцнка дисперсї. Математична теоря експерименту у технко-економчних задачах.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 19.02.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


6
Зміст

1. Послідовність незалежних випробувань. Моменти біноміального розподілу
2. Оцінка дисперсії
3. Математична теорія експерименту у техніко-економічних задачах
4. За даними закону розподілу знайти М(х), Д(х), у(х)
Література
1. Послідовність незалежних випробувань. Моменти біноміального розподілу

Нехай проводяться n випробувань, у кожному з яких подія А може як відбутись, так і не відбутись. Якщо ця ймовірність у кожному випробуванні не залежить від того, відбулась вона в інших випробуваннях чи ні, то такі випробування називаються незалежними щодо події А. Згідно з означенням випробування також незалежні, якщо в кожному з них імовірність настання події А однакова, тобто дорівнює тому самому числу. Імовірність того, що подія А відбудеться в кожному з незалежних випробувань, позначають а ймовірність настання протилежної події
Для розв'язування задач на повторні незалежні випробування застосовують такі формули і теореми.
Формула Бернуллі. Імовірність того, що в n незалежних випробуваннях, у кожному з яких імовірність Р(А) = р, подія А відбудеться m раз, подається так:
Формула застосовується, якщо
Найімовірніша кількість. Частота настання події А в n незалежних повторних випробуваннях називається найімовірнішою кількістю (появи цієї події), якщо їй відповідає найбільша ймовірність. Вона визначається за формулою:
Розподіл може мати одне або два найімовірніші числа.
Локальна теорема Лапласа. Імовірність того, що в n незалежних випробуваннях, у кожному з яких Р(А) = р, подія А відбудеться m раз, подається такою наближеною залежністю:
Локальна теорема Лапласа дає змогу обчислювати ймовірності , якщо n > 10 i p > 0,1.
Формула Пусона. Якщо в кожному з n незалежних повторних випробувань
, а n велике, то
Інтегральна теорема Лапласа. Імовірність того, що подія А відбудеться від до раз при проведенні n незалежних випробувань, у кожному з яких подія А відбувається з імовірністю р, подається формулою:
-- функція Лапласа;
Значення функції Лапласа наводяться у спеціальних таблицях.
Відхилення відносної частоти від імовірності. Імовірність того, що при проведенні n незалежних випробувань відхилення відносної частоти події А від її ймовірності за модулем не перевищить , визначається за формулою:
Твірна функція. Нехай проводяться n незалежних випробувань, в яких подія А відбувається з імовірністю
Тоді ймовірність настання цієї події m раз визначається за допомогою твірної функції
Якщо перетворити праву частину функції і звести подібні члени, то коефіцієнт при визначає
У теорії ймовірностей часто застосовуються деякі закони розподілу випадкових величин. Розглянемо ці розподіли, а також задачі, де вони використовуються.
Біноміальний закон розподілу
Імовірності в цьому законі визначаються за формулою
m = 0,1,2, …, n.
Закон справджується для схеми незалежних повторних випробувань, у кожному з яких подія А настає з імовірністю р. Частота настання події А має біноміальний закон розподілу. Числові характеристики розподілу:
2. Оцінка дисперсії
Оцінка параметра розподілу сукупності у загальному випадку є випадковою величиною, яка визначається за даними вибірки і використовується замість невідомого значення параметра, який потрібно оцінити.
Оцінка називається обґрунтованою, якщо вона збігається за ймовірністю до відповідного параметра при
Оцінка називається незміщеною, якщо її математичне сподівання збігається зі значенням параметра.
У різі вибору з усіх відомих незміщених обґрунтованих оцінок певної оцінки потрібно зазначити критерій, за яким зроблено вибір.
Найчастіше застосовується критерій, який полягає у виборі оцінки, що має найменшу можливу дисперсію. Така оцінка називається ефективною. Нижня межа дисперсії незміщеної оцінки параметра (яку позначатимемо ), подається формулою:
де -- щільність розподілу випадкової величини (для дискретної випадкової величини ).
Оцінки параметрів розподілу знаходять методами максимальної правдоподібності і моментів. Метод максимальної правдоподібності полягає ось у чому. Нехай закон розподілу випадкової величини подається через параметр , який у загальному випадку k-вимірний. Тоді для вибірки спільний закон розподілу подається функцією правдоподібності (запишемо, наприклад, для неперервних величин):
За оцінки максимальної правдоподібності параметрів беруться вибіркові функції, які є розв'язком системи рівнянь:
Застосування методу моментів ґрунтується на збіжності (за ймовірністю) статистичних моментів розподілу до відповідних теоретичних моментів розподілу, які в такому разі мають існувати. Як відомо, теоретичні моменти розподілу виражаються через параметри розподілу. Складаємо систему k рівнянь, в якій попарно прирівнюємо відповідні теоретичні і статистичні моменти. Розв'язком цієї системи є оцінки для параметрів розподілу.
Нехай маємо точкову оцінку параметра . Знайдемо для параметра інтервальну оцінку, скориставшись умовою В такому разі називається точністю оцінки, а -- її надій- ністю. Тоді інтервальна оцінка (довірчий інтервал) для параметра набуває вигляду Параметр -- не випадкова величина, надійність можна розглядати як імовірність того, що випадковий інтервал покриває дійсне значення параметра. Величини тісно зв'язані з обсягом вибірки Якщо задати дві з цих величин, то можна знайти третю. Для цього потрібно знати закон розподілу для
Приклади розв'язування задач
Приклад 1. Вибірку обсягом n зроблено із сукупності, розподіленої за законом Релея
Знайти оцінку для параметра і перевірити її на незміщеність, обґрунтованість і ефективність.
Розв'язання. Застосуємо метод максимальної правдоподібності. Побудуємо функцію правдоподібності, складемо і розв'я жемо рівняння для визначення оцінки:
Перевіримо оцінку на незміщеність, знайшовши її математичне сподівання:
Перетворення виконано згідно з властивостями математичного сподівання та з урахуванням того, що результати вибірки є незалежними однаково розподіленими випадковими величинами. Знайдемо випадкової величини, розподіленої за законом Релея:
Тоді тобто оцінка незміщена.
Перевірку обґрунтованості оцінки виконаємо, скориставшись другою формою нерівності Чебишова, тобто оцінимо ймовірність Щоб знайти дисперсію оцінки, виконаємо обчислення:
(Останній інтеграл, що є математичним сподіванням квадрата випадкової величини, дорівнює і обчислювався раніше.) Тоді Отже, маємо:
Підставляючи дисперсію оцінки в нерівність Чебишова, дістаємо:
Отже, оцінка обґрунтована.
Знаходимо дисперсію ефективної оцінки:
Дисперсія ефективної оцінки збігається з дисперсією знайденої оцінки для а це означає, що оцінка ефективна.
Приклад 2. За методом моментів знайти оцінку параметра р геометричного розподілу за даними вибірки обсягом n.
Розв'язання. Геометричний закон розподілу визначається формулою:
Оскільки потрібно знайти оцінку одного параметра, зрівнюємо теоретичні і статистичні початкові моменти першого порядку:
Приклад 3. За даними вибірки обсягом n із нормально розподіленої сукупності, дисперсія якої , а надійність , знайти інтервальну оцінку для математичного сподівання цієї сукупності.
Розв'язання. Інтервальна оцінка для математичного сподівання, якщо дисперсія сукупності відома, подається у вигляді
де де -- функція Лапласа.
Для побудови оцінки розглядалась вибіркова функція яка має нормальний закон розподілу з нульовим математичним сподіванням і одиничною дисперсією.
Приклад 4. Розв'язати попередню задачу для випадку, коли дисперсія сукупності невідома.
Розв'язання. У цьому випадку інтервальну оцінку побудуємо за допомогою вибіркової функції
яка розподілена за законом Стьюдента з n - 1 ступенями волі. Довірчий інтервал
де а де -- функція розподілу Стьюдента з n - 1 ступенями волі. Якщо кількість ступенів волі перевищує 20, то розподіл Стьюдента практично не відрізняється від нормального закону розподілу з нульовим математичним сподіванням і одиничною дисперсією.
Приклад 5. За результатами вибірки обсягом n із нормально розподіленої сукупності з надійністю знайти довірчий інтервал для дисперсії сукупності.
Розв'язання. Для визначення довірчого інтервалу беремо вибіркову функцію яка має розподіл з n - 1 ступенями волі. Довірчий інтервал подається у вигляді Значення визначаються за допомогою таблиць розподілу з відповідною кількістю ступенів волі:
3. Математична теорія експерименту у техніко-економічних задачах

Можна виокремити щонайменше чотири функції щодо застосування математичної теорії експерименту у техніко-економічних задачах.
1. Удосконалення системи економічної інформації. Математичні експерименти дозволяють упорядковувати систему економічної інформації, виявляти недоліки в наявній інформації і виробляти вимоги до підготовки нової інформації чи її коригування. Розробка і застосування економіко-математичних моделей вказує шляхи вдосконалення економічної інформації, орієнтованої на вирішення певної системи завдань планування та управління. Прогрес у інформаційному забезпеченні планування та управління спирається на технічні й програмні засоби інформатики, яка бурхливо розвивається.
2. Інтенсифікація і підвищення точності економічних розрахунків. Формалізація економічних задач і застосування комп'ютерів багаторазово прискорюють типові, масові розрахунки, підвищують точність і скорочують трудомісткість, дозволяють проводити багатоваріантні економічні дослідження та обґрунтування складних заходів, недосяжні за панування «ручної» технології.
3. Поглиблення кі и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.