На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 22.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Курсовая работа
"Представления конечных групп"

Содержание
Основные обозначения
Введение
1. Представления конечных групп

1.1 Представления групп

1.2 Представления унитарными матрицами и полная приводимость представлений конечных групп

1.3 Лемма Шура

1.4 Соотношения ортогональности для характеров

1.5 Индуцированные представления

1.6 Произведение представлений

Заключение
Список использованных источников

Основные обозначения

- группа
- порядок группы
- единичный элемент группы
- единичная подгруппа, единичная группа
- множество всех простых делителей натурального числа
- множество всех простых делителей порядка группы
- центр группы
- подгруппа Фиттинга группы
- подгруппа Фраттини группы
- коммутант группы
- централизатор подгруппы в группе
- нормализатор подгруппы в группе
- группа всех автоморфизмов группы
- группа всех внутренних автоморфизмов группы
- является подгруппой группы
- является собственной подгруппой группы
- является максимальной подгруппой группы
- является нормальной подгруппой
- является субнормальной подгруппой группы
- является минимальной нормальной подгруппой группы
- индекс подгруппы в группе
- прямое произведение подгрупп и
- полупрямое произведение нормальной подгруппы и подгруппы
Введение
В данной работе приведены доказательства следующих теорем:
Теорема. Непустое подмножество группы будет подгруппой тогда и только тогда, когда и для всех .
Группой называется непустое множество с бинарной алгебраической операцией (умножением), которая удовлетворяет следующим требованием:
1) операция определена на , т.е. для всех ;
2) операция ассоциативна, т.е. для любых ;
3) в существует единичный элемент, т.е. такой элемент , что для всех , что для всех ;
4) каждый элемент обладает обратным, т.е. для любого существует такой элемент , что .
Более кратко: полугруппа с единицей, в которой каждый элемент обладает обратным, называется группой.
Группу с коммутативной операцией называют коммутативной или абелевой. Если - конечное множество, являющиеся группой, то называют конечной группой, а число элементов в - порядком группы .
Подмножество группы называется подгруппой, если - группа относительно той же операции, которая определена на . Запись означает, что - подгруппа группы , а - что - собственная подгруппа группы , т.е. и .
Централизатор. Пусть - непустое подмножество группы . Совокупность всех элементов группы , перестановочных с каждым элементом множества , называется централизатором множества в группе и обозначается через .
Лемма
1. Если - подмножество группы , то централизатор является подгруппой.
2. Если и - подмножество группы и , то
3. Если - подмножество группы и , то
Центр группы. Центром группы называется совокупность всех элементов из , перестановочных с каждым элементом группы. Центр обозначается через . Ясно, что , т.е. центр группы совпадает с централизатором подмножества в группе . Кроме того, .
Зафиксируем в группе элемент . Пересечение всех подгрупп группы , содержащих элемент , назовем циклической подгруппой, порожденной элементом , и обозначим через .
Теорема. Циклическая подгрупппа , порожденная элементом , состоит из всевозможных целых степеней элемента , т.е.
Следствие. Циклическая подгруппа абелева.
Порядок элемента. Пусть - элемент группы . Если все степени элемента различны, т.е. для всех целых , то говорят, что элемента имеет бесконечный порядок.
Нормализатор. Если - непустое подмножество группы и то и Элемент называется перестановочным с подмножеством , если . Равенство означает, что для любого элемента существует такой элемент , что . Если элемент перестановочен с подмножеством , то и . Совокупность всех элементов группы , перестановочных с подмножеством , называется нормализатором подмножества в группе и обозначается через . Итак,
Лемма. Пусть - непустое подмножество группы , - произвольный элемент группы . Тогда:
1) ;
2) ;
3) ;
4) ;
5) если - подгруппа группы , то
Подгруппа называется нормальной подгруппой группы , если для всех . Запись читается: » - нормальная подгруппа группы «. Равенство означает, что для любого элемента существует элемент такой, что .
Теорема. Для подгруппы группы следующие утверждения эквивалентны:
1) - нормальная подгруппа;
2) подгруппа вместе с каждым своим элементом содержит все ему сопряженные элементы, т.е. для всех ;
3) подгруппа совпадает с каждой своей сопряженной подгруппой, т.е. для всех .
Лемма. Пусть - подгруппа группы . Тогда:
1) ;
2) если и , то ;
3) - наибольшая подгруппа группы , в которой нормальна;
4) если , то . Обратно, если , то ;
5) для любого непустого подмножества группы .
Простая группа. В каждой группе тривиальные подгруппы (единичная подгруппа и сама группа ) являются нормальными подгруппами. Если в неединичной группе нет других нормальных подгрупп, то группа называется простой. Единичную группу считают непростой.
Представления конечных групп

1.1 Представления групп


Пусть - группа всех невырожденных матриц порядка над полем комплексных чисел. Если - произвольная группа, то ее (матричным) представлением называется любой ее гомоморфизм в
G,
такой, что
,
(единичная матрица),
. Число n называется степенью этого представления. Если гомоморфизм A иньективен, то представление называется точным.
Пример 1.1 Отображение, переводящее каждый элемент группы в , является представлением степени . Оно называется тождественным представлением группы и обозначается через .
Пример 1.2 Если - некоторое представление группы , то для каждой невырожденной матрицы отображение также является представлением этой группы.
Пусть и - два представления группы . Если существует невырожденная матрица , такая, что что
,
то представления и называются эквивалентными. Тот факт, что представления и эквивалентны, мы будем обозначать так: . Отношение определяет классы эквивалентных представлений группы .
Пример 1.3. Пусть - симметрическая группа степени . Для элемента
через обозначим матрицу, строка которой имеет вид , где 1 стоит на месте. Другими словами,
где
Такое отображение является точным представлением группы .
1.4. Пусть -конечная группа, состоящая из элементов и пусть - симметрическая группа на . Отображение, которое ставит в соответствие элементу подстановку
является инъективным гомоморфизмом группы в . С такой подстановкой мы свяжем матрицу
где, как и в примере ,
Тогда отображение является точным представлением группы . Оно называется правым регулярным представлением этой группы. Определим следующим образом:
Тогда
и, если , то каждый диагональный элемент равен нулю.
регулярное представление группы определяется аналогично с использованием гомоморфизма
Другими словами,
Пусть - некоторый гомоморфизм из в , т.е. подстановочное представление группы . Представив подстановку в виде матрицы , как это сделано в примере 1.3, мы получим представление
Пусть - представление степени . Говорят, что приводимо, если существует такая невырожденная матрица , что
где и - квадратные матрицы порядка и соответственно, причем Отметим, что представления
эквивалентны, поскольку для матрицы
Скажем, что представление неприводимо, если оно не является приводимым. Отметим, что в (1.3) отображения и являются представлении степеней и соответственно.
Для заданных представлений и группы степеней и соответственно отображение
является представление степени этой группы. Такое, представление называется прямой суммой представлений и и обозначается через .
Представление группы называется вполне приводимым, если оно эквивалентно прямой сумме некоторых неприводимых представлений, т.е. если найдется невырожденная матрица , такая, что
где каждое является неприводимым представлением группы .

1.2 Представления унитарными матрицами и полная приводимость представлений конечных групп


Представление группы называется унитарным, если для всех матрица является унитарной, т.е. . Здесь обозначает матрицу, транспонированную к , где , а - величина, комплексно - сопряженная к . В этом параграфе мы покажем, что каждое представление конечной группы эквивалентно некоторому ее унитарному представлению и является мполне приводимым.
Матрица называется эрмитовой, если , и положительно определенной, если для каждого ненулевого столбца . Следующая лемма тривиальна.
Лемма 2.1. Пусть - произвольная невырожденная матрица. Тогда - положительно определенная эрмитова матрица. Кроме того, сумма положительно определенных эрмитовых матриц также является положительно определенной эрмитовой матрицей.
Лемма 2.2. Для любой положительно определенной эрмитовой матрицы найдется невырожденная верхнетреугольная матрица , такая, что .
Доказательство. Пусть . Тогда и . Пусть
.
Положим
Тогда
и - положительно определенная эрмитова матрица. Для завершения доказательства достаточно воспользоваться индукцией по порядку матрицы .
Теорема 2.3. Пусть - конечная группа. Для каждого представления группы найдется невырожденная верхнетреугольная матрица , такая, что является унитарной матрицей для всех .
Доказательство. Положим
Тогда в силу леммы 2.1 является положительно определенной эрмитовой матрицей. Таким образом, найдется невырожденная верхнетреугольная матрица , такая, что и поэтому . Так как
то , т.е. ; поэтому - унитарная матрица.
Теорема 2.4. Каждое представление конечной группы вполне приводимо.
Доказательство. Пусть - приводимое представление конечной группы , и пусть разлагается следующим образом:
В силу предыдущей теоремы существует невырожденная матрица , такая, что - унитарная матрица. Так как верхнетреугольная, то имеет вид
Поскольку , мы получаем
откуда следует, что .

1.3 Лемма Шура


Лемма 3.1. (Лемма Шура.) Пусть и - неприводимые представления группы степеней и соответсвенно. Пусть - такая - матрица, что
Тогда либо
,
либо
и невырожденная.
Доказательство. Допустим, что . Покажем, что тогда имеет место . Предположим, что либо , либо и вырожденна. Тогда существуют матрицы и , такие, что
где . Так как , то
где
Таким образом, , если , и , если . В любом случае или приводимо, что противоречит условию.
Теорема 3.2. Пусть - неприводимое представление группы . Пусть - такая матрица, что для всех . Тогда , где .
Доказательство. Пусть - некоторое собственное значение матрицы . Тогда , а, кроме того,
откуда в силу леммы Шура следует, что
Теорема 3.3. Пусть - абелева группа. Тогда каждое ее неприводимое представление имеет степень 1.
Доказательство. Пусть - неприводимое представление группы . Поскольку коммутирует с каждой матрицей , из предыдущей теоремы следует, что , где . Поскольку неприводимо, отсюда вытекает, что его степень равна 1.

1.4 Соотношения ортогональности для характеров

Ниже везде предполагается, что рассматриваемые группы конечны.
Характеры. Для квадратной матрицы порядка обозначим через ее след, т.е.
Путем прямых вычислений доказывается следующая
Лемма 4.1.
для произвольной квадратной матрицы .
Для представления группы положим Тогда - функция, принимающая значения в множестве и называемая характером представления . Очевидно, что равно степени представления . Характеры неприводимых представлений называются неприводимыми характерами. Из леммы 4.1 (2) вытекает следующая
Лемма 4.2. Эквивалентные представления имеют один и тот же характер.
Поскольку , имеет место равенство . Таким образом, принимает одно и то же значение на всем классе сопряженных элементов группы . Такие функции называются функциями классов.
Первое соотношение ортогональности для характ и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.