На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 05.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


38
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им.Ф. СКОРИНЫ
Математический факультет
Кафедра математического анализа
Применение производной при нахождении предела
Курсовая работа
Исполнитель Бурцева Е.А.
студентка группы М-43
Научный руководитель Астапович Г.Е.
ГОМЕЛЬ 2009
Содержание

    Введение
      1. Бесконечно малые и их сравнения; символы "o малое" и "о большое"
      2. Основные теоремы дифференциального исчисления
      2.1 Теорема Ферма о нуле производной
      2.2 Теорема Ролля о нуле производной
      2.3 Теорема Лагранжа о конечных приращениях
      2.4 Теорема Коши о конечных приращениях
      3. Раскрытие неопределенностей. правило лопиталя
      3.1 Раскрытие неопределенностей вида 0/0
      3.2 Раскрытие неопределенностей вида /
      3.3 Использование правила Лопиталя для выделения главных частей и определения порядков бесконечно больших
      3.4 Раскрытие неопределенностей вида 0, 1, 00,0, -
      4. Формула тейлора. вычисление пределов с помощью формулы тейлора
      4.1 Многочлен Тейлора. Формула Тейлора с остаточным членом Rn.
      4.2 Остаток в форме Пеано
      4.3 Другие формы остатка в формуле Тейлора
      4.4 Разложение некоторых элементарных функций по формуле Тейлора
      4.5 Примеры использования стандартных разложений для представления функций по формуле Тейлора и для вычисления пределов
      4.6 Формула Тейлора для четных и нечетных функций
      Заключение
      Список использованных источников

Введение

Данная курсовая работа раскрывает применение производной при вычислении пределов. Вычисление пределов важная часть математического анализа, поскольку практически весь курс математического анализа опирается на понятие предела.

Действительно, производная, интеграл, непрерывность функции - все эти понятия используют предел.

Курсовая работа состоит из четырех разделов.

В первом разделе раскрывается понятие скорости роста функции, вводятся символы "О большое" и "о малое", и важное понятие, для вычисления пределов, эквивалентные функции.

Во втором разделе приведены основные теоремы дифференциального исчисления, служащие необходимой основой для правила Лопиталя и формулы Тейлора.

В третьем разделе приведено правило Лопиталя и методы раскрытия всех типов неопределенностей. Примеры для этого и последующего раздела были взяты из [Марон].

В четвертом разделе приведен вывод формулы Тейлора и показано применение формулы Тейлора для нахождения эквивалентных функций и вычисления пределов.

1. Бесконечно малые и их сравнения; символы "o малое" и "о большое"

Определение. Бесконечно малой в x0 называется функция f (x) такая, что

Свойства бесконечно малых функций:

1) Критерий существования конечного предела функции

б. м. функция (x) при xx0: f (x) =A+ (x)

2) (x), (x) б. м. (x) + (x) б. м.

3) Произведение бесконечно малой функции на ограниченную является бесконечно малой функцией.

4) Произведение бесконечно малых функций является бесконечно малой функцией.

Определение. f (x) определенная в проколотой окрестности x0 называется бесконечно большой в т. x0, если .

5) Если (x) б. м. при xx0 и (x) 0, то 1/ (x) является бесконечно большой и наоборот. Символически это записывают в виде 1/=0, 1/0=.

Сравнение бесконечно малых и бесконечно больших функций. Символы O, o

f,g определенны в некоторой проколотой окрестности x0

Пишут

,

Если

.

Аналогично определяется O при xx0+0, xx0 - 0, x, x.

Пример: f (x) =O (1),x означает локальную ограниченность функции в .

Опр. Если при xx0, f (x) =O (g) и g (x) =O (f), то f (x), g (x) называются функциями одного порядка.

Пример: Функции x3,x2 являются функциями одного порядка при x1.

Определение o. Пусть f (x), g (x) определенны в некоторой проколотой окрестности точки x0, пишут f (x) =o (g (x)), xx0, если

б. м. (x) при xx0, такая, чтоx: f (x) = (x) g (x)

Аналогично определяется o при xx0+0, xx0 - 0, x, x.

Пример: f (x) =o (1), при xx0 означает, что f (x) бесконечно малая при xx0.

Некоторые примеры работы с символами o (подразумевается x0).

o (xn) o (xn) = o (xn)

xm o (xn) = o (xn+m)

c o (xn) = o (xn) (c-константа)

o (xn) o (xn+p) = o (xn), здесь p натуральное.

o (xn+p) /xp= o (xn) В частности, o (xp) /xp= o (1).

o (an xn an+1 xn+1 an+p xn+p) = o (xn)

Если , б. м. и =o (), то говорят, что бесконечно малая более высокого порядка, чем .

Определение. Функции f (x), g (x) называются эквивалентными в x0 (говорят так же, в окрестности x0), если выполнено хотя бы одно из двух условий

f (x) =g (x) +o (g (x)), xx0

g (x) =f (x) +o (f (x)), xx0.

Условие эквивалентности записывается в виде fg, при xx0.

Замечание 1. Если выполнено одно из этих условий, то будет выполнено и второе.

Замечание 2. Эти условия можно записать в другой форме. Например, первое из них: в некоторой проколотой окрестности точки имеет место равенство

f (x) =h (x) g (x), =1.

Замечание 3. Если, например, g (x) 0, то первое условие можно записать в виде

.

Определение. Если f (x) (x-x0) n при xx0, то f (x) называется бесконечно малой порядка n при xx0.

Если f (x) при xx0, то f (x) называется бесконечно большой порядка n при xx0.

Если f (x) бесконечно большая при x и f (x) эквивалентна xn при x, то f (x) называется бесконечно большой порядка n при x.

Замечание. Если f (x) бесконечно малая порядка n, то 1/f (x) будет бесконечно большой порядка n и наоборот.

Примеры. Определить характер функций

, в 0, 1,+.

При вычислении пределов полезна следующая теорема

Теорема 2. Пусть f эквивалентна f1, g эквивалентна g1 при xx0.

Если существует предел , тогда существует и .

Если существует предел , тогда существует и .

Определение. Если , то g называется главной частью f при x x0.

2. Основные теоремы дифференциального исчисления

2.1 Теорема Ферма о нуле производной

Теорема. Если f (x) - определена на (a,b) и дифференцируема в точке x0 (a,b), принимает в точке x0 наибольшее или наименьшее значение, то f (x0) =0.

Доказательство. Для случая наименьшего значения

f (x0+0) = 0, f (x0-0) = 0 f (x0) =0

Геометрическая интерпретация

2.2 Теорема Ролля о нуле производной

Теорема. Если f непрерывна на [a,b], дифференцируема на (a,b) и f (a) =f (b). Тогда

x0 (a,b): f (x0) =0.

Доказательство. Положим

, .

Хотя бы одна из точек x1, x2 внутренняя и для этой точки утверждение следует из теоремы Ферма.

2.3 Теорема Лагранжа о конечных приращениях

Теорема. Если f непрерывна на [a,b], дифференцируема на (a,b), то

(a,b): f (b) - f (a) =f () (b-a).

Доказательство. Рассмотрим функцию

.

Для этой функции F (a) =F (b) =0, и к ней применима теорема Роля

.

Геометрическая интерпретация

Существует точка, касательная в которой, параллельна хорде, соединяющей точки A и B графика.

Следствие 1. Если f непрерывна на [a,b], дифференцируема на (a,b) и f (x) 0 на (a,b), то f (x) const.

Применяя теорему к произвольному отрезку [x0,x], где x0 произвольная фиксированная точка, получим

f (x) - f (x0) =f () (x - x0) =0, т.е. f (x) = f (x0).

Следствие 2. Если f непрерывна на [a,b], дифференцируема на (a,b) и f (x) =g (x) на (a,b), то f (x) =g (x) + const.

2.4 Теорема Коши о конечных приращениях

Теорема. Если f, g непрерывны на [a,b], дифференцируемы на (a,b), то существует

(a,b): g () (f (b) - f (a)) = f () (g (b) - g (a)).

Доказательство. Рассмотрим вспомогательную функцию

F (x) = g (x) (f (b) - f (a)) - f (x) (g (b) - g (a)).

Для этой функции

F (a) = g (a) (f (b) - f (a)) - f (a) (g (b) - g (a)) = g (a) f (b) - f (a) g (b),

F (b) = g (b) (f (b) - f (a)) - f (b) (g (b) - g (a)) = - f (a) g (b) +g (a) f (b),

таким образом, F (a) =F (b) и к ней применима теорема Ролля: существует точка (a,b) для которой выполняется равенство

0=F (b) - F (a) =F () (b-a) = [g () (f (b) - f (a)) - f () (g (b) - g (a))] (b-a).

Следствие. Если g (x) 0 на (a,b), то

.

Доказательство. Если g (x) 0, то g (b) - g (a) 0. Иначе, в случае g (b) =g (a), по теореме Ролля нашлась бы точка , где g () =0.

3. Раскрытие неопределенностей. правило лопиталя

3.1 Раскрытие неопределенностей вида 0/0

Дано: f (x), g (x) определены на (x0,b) и

1)

2) f,g дифференцируемы на (x0,b)

3) g (x) 0 на (x0,b).

Тогда

,

если существует конечный или бесконечный предел

.

Доказательство. Доопределим f, g в точке x0 по непрерывности нулем f (x0) =g (x0) =0. По тереме Коши, примененной к отрезку [x0,x], будет существовать (x) (x0,x): x0< (x) < x и , из условия x0< (x) <x следует, что , причем (x) x0, если xx0. По теореме о существовании предела суперпозиции

= ч. т.д.

Замечание. Аналогично это утверждение доказывается для левой окрестности. Откуда получаем утверждение для x x0.

Следствие 1. Если

1) Существуют f (k),g (k), k=1,2,…,n на (x0,b)

2) , k=0,1,…,n-1

3) Существуeт g (n) (x) 0 на (x0,b), то

,

если

существует, конечный или бесконечный.

Следствие 2. Если f, g дифференцируемы для x>a,

, то

,

если последний существует, конечный или бесконечный.

Доказательство. Сделаем замену

Замечание. Аналогичные утверждения имеют место для x - .

3.2 Раскрытие неопределенностей вида /

f,g определены на (x0,b) и

1)

2) f,g дифференцируемы на (x0,b)

3) g (x) 0 на (x0,b)

Тогда

,

если последний существует конечный или бесконечный.

Замечание. Аналогичные утверждения имеют место для x x0 - 0, x x0, x +, x - .

3.3 Использование правила Лопиталя для выделения главных частей и определения порядков бесконечно больших

В некоторых случаях порядок бесконечно малой или бесконечно большой можно определить, последовательно вычисляя производные. Предположим, что и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.