На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Решение задач

Информация:

Тип работы: контрольная работа. Добавлен: 07.07.2012. Сдан: 2011. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


    Задание 

По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции ( , млн. руб.) от объема капиталовложений ( , млн. руб.)
Требуется:
    Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
    Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.
    Проверить выполнение предпосылок МНК.
    Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента
    Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью - критерия Фишера , найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
    Осуществить прогнозирование среднего значения показателя при уровне значимости  ,  если прогнозное значения фактора Х составит 80% от его максимального значения.
    Представить графически: фактические и модельные значения точки прогноза.
    Составить уравнения нелинейной регрессии:
    гиперболической;
    степенной;
    показательной.
    Привести  графики построенных уравнений регрессии.
    Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод. 
31 23 38 47 46 49 20 32 46 24
38 26 40 45 51 49 34 35 42 24
 
 
 
 
 
 
 
 
 
    Задание 1 

    Найдем параметры  уравнения линейной регрессии:
    Для  этого нужно создать и сохранить  файл в электронных таблицах Excel.
    Введем  в таблицу данные, характеризующие зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.).
      Уравнение линейной регрессии  имеет вид:  = а0 + а1x.
    Построим  диаграмму рассеяния (Мастер диаграмм ? Точечная). Добавить линию тренда-линейная-параметры-показывать уравнение на диаграмме, поместить на диаграмме величину достоверности аппроксимации.
        Определим параметры линейной  регрессии с помощью функций  НАКЛОН и ОТРЕЗОК или опции  диаграммы. Добавить линию тренда (отметить на вкладке Параметры опцию Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации). Определить коэффициент детерминации R2.
     Параметр «а»=12,708; параметр «в»=0,722. Получили модель: . Это однофакторная модель.
      Параметр, который находится при факторном  признаке, называется коэффициентом  регрессии.  
      Коэффициент регрессии в=0,722 означает, что с увеличением объема капиталовложений «х» на 1 млн. руб. объем выпуска продукции «y» в среднем увеличится на 722 тыс. руб. 
 

    Задание 2 
     

    Вычислим  остатки. Они вычисляются, как разность Y – Yregr . Вычислим остаточную сумму квадратов (дисперсию) на одну степень свободы S2. Сумму квадратов найти с помощью функции «Мастер функций» EXCEL СУММКВ:

Дисперсию остатков можно определить с помощью  стандартной функции «Мастера функций» EXCEL «ДИСП»: . График остатков построен с помощью «Мастера диаграмм» EXCEL .
Для построения графика остатков нужно выполнить следующие действия:
    Вызвать Матер Диаграмм, выбрать тип диаграммы Точечная (с соединенными точками).
    Для указания данных для построения диаграммы зайти во вкладку Ряд, нажать кнопку Добавить; в качестве значений Х укажем исходные данные Х значения Y - остатки .График представлен в Приложении.
 
 
 
 
Задание 3
     Проверим выполнение  предпосылок МНК  (оценим адекватность  модели).
   Для оценки адекватности модели исследуем остатки.
   Исследование  остатков предполагает проверку наличия  у них следующих пяти свойств (предпосылок МНК):
   а. Нулевая (или близкая к ней) средняя  величина остатка.
   б. Случайность  характера остатка.
   в. Независимость (отсутствие автокорреляции) остатков.
   г. Соответствие ряда остатков нормальному закону распределения.
   д. Гомоскедастичность (постоянство) дисперсии остатков. 

   А.
   Для вычисления среднего значения остатка используем функцию СРЗНАЧ
   В данной задаче , поэтому первое свойство остатков выполняется. 

   Б.
   Для проверки случайности остатков используем критерий поворотных точек. Анализируя построенный график остатков делаем вывод, что в этой задаче число поворотных точек р=6. В случайном ряду чисел должно выполняться строгое неравенство:
     при n=10
         В нашем случае правая часть неравенства  равна:
         Т.е. в нашей задаче провиденное выше неравенство  выполняется, а значит, свойство случайности остатков имеет место. 

   В.
   При проверке независимости (отсутствия автокорреляции) используется коэффициент автокорреляции .
   Для расчета  автокорреляции используется стандартная  функция КОРРЕЛ: 0,14
   Оценим  значимость полученного коэффициента автокорреляции с использованием t-критерия:
   Расчетное значение t-критерия: =0,40.
   Табличное значение t-статистики определяется с помощью функции СТЬЮДРАСПОБР(0,05;8)=2,306.
   Поскольку расчетное значение t-критерия меньше табличного, то коэффициент автокорреляции незначим, т.е. остатки не автокоррелированы. Свойства независимости остатков выполняется.
   Модель  в целом адекватна. 

   Г.
   Соответствие  ряда остатков нормальному закону распределения  определяется при помощи R/S-критерия.
   
   Полученное  значение этого критерия попадает между  табулированными границами (2,67-3,57) с  заданным уровнем значимости ( ) и n=10, таким образом, свойство соответствия ряда остатков нормальному закону распределения выполняется.
   Д.
   Чтобы оценить нарушение гомоскедастичности по тесту Гольдфельда-Кванта необходимо выполнить следующие шаги:
    Упорядочение n наблюдений по мере возрастания переменной Х
 
    Разделение  совокупности на две группы соответственно с малыми и большими значениями фактора  Х, определение по каждой из групп  уравнений регрессии. Разделение на две группы по фактору Х примет вид:
1   2
х у   х у
49 49   32 35
47 45   31 38
46 51   24 24
46 42   23 26
38 40   20 34
 
Определение остаточной суммы квадратов для  первой и второй регрессии. Остаточную сумму квадратов для первой и  второй регрессии можно определить по формулам: или с помощью стандартной функции «Мастера функций» EXCEL «СУММКВ»:  .
Вычисление  отношений  или , в числителе должна быть большая сумма квадратов. В нашем случае .
Далее используется F-критерий Фишера. Табличное значение F-статистики можно определить с помощью стандартной функции «Мастера функций» EXCEL «FРАСПОБР (?,n1-m,n-n1-m)»:
      Поскольку , то гетероскедастичность остатков не обнаружена, а значит, свойство гомоскедастичности остатков выполняется.  
 

   Оценка  адекватности модели выполнена.
   Построенная модель является адекватной реальному  процессу, её можно использовать для  построения прогнозных оценок. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Задание 4 

Осуществить проверку значимости параметров уравнения регрессии  с помощью t-критерия Стьюдента
Расчетные значения t-статистики для соответствующих параметров определяются по формулам: , где и -стандартные ошибки оценки параметров «а» и «в» (Приложение 1).
      Табличное значение t-статистики можно определить с помощью стандартной функции «Мастера функций» EXCEL «СТЬЮДРАСПОБР (0,.05;8)»: .
      Поскольку , то параметр «а» статистически значим, и поскольку , то коэффициент регрессии «в» - статистически значим. 
 
 

Задание 5 

Вычислить коэффициент детерминации, проверить  значимость уравнения регрессии с помощью - критерия Фишера , найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели. 

Коэффициент детерминации найдем по формуле: .
      Таким образом, все изменения (вариации) в  объеме выпуска продукции «y» на 79,5% обусловлены вариациями в объеме капиталовложений «x», т.е. в факторе, учтенном в модели. Соответственно, все изменения в объеме выпуска продукции «y» на 20,5% (100% - 79,5%) обусловлены изменениями в факторах, не учтенных в модели.
      Оценку  значимости уравнения регрессии  в целом можно осуществить  с помощью F-критерия Фишера (? = 0,05).
      Расчетное значение F-критерия Фишера определяется по формуле: , где - число факторных признаков в модели.
      Табличное значение F-статистики можно определить с помощью стандартной функции «Мастера функций» EXCEL «FРАСПОБР (0,5;1;8):
      Поскольку , то построенное уравнение регрессии статистически значимо.
Найдем   среднюю относительную ошибку аппроксимации ( ) по формуле:
      Таким образом, модельные значения ( ) отклоняются от фактических значений ( ) в среднем на 9,31%. Так как величина ошибки менее 15% ( ), то получена модель удовлетворительной точности. 

Задание 6 

Осуществить прогнозирование  среднего значения показателя при уровне значимости  ,  если прогнозное значения фактора Х составит 80% от его максимального значения. 

Согласно  условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно, . Рассчитаем по уравнению модели прогнозное значение показателя У:
.

      Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый  объем выпуска продукции составит около 41 млн. руб.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.