На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Расчет внешнего осесимметричного обтекания тел вращения. Поперечное обтекание тел вращения с сохранением системы координат. Расчет обтекания тел вращения большого удлинения приближенным методом. Продольное и поперечное обтекание удлиненных тел вращения.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 12.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


1
Содержание
Введение
1. Продольное обтекание тел вращения
2. Поперечное обтекание тел вращения
3. Продольное и поперечное обтекание удлиненных тел вращения
4. Применение метода особенностей для расчета продольного и поперечного обтеканий тел вращения
Список источников
Введение
Теоретическая механика, изучая простейшие, механические формы движения и взаимодействия материальных тел, отвлекается от многих их действительных свойств и использует в качестве допустимой абстракции понятия материальной точки и системы материальных точек. Материальная система может быть как дискретной, состоящей из отдельных материальных точек, так и сплошной, представляющей непрерывные распределения вещества и физических характеристик его состояния и движения в пространстве. В этом случае систему называют сплошной материальной средой или, короче, сплошной средой.
Простейшим примером сплошной среды является неизменяемая среда или абсолютно твердое тело. Более общий образ изменяемой сплошной среды объединяет в механике как упругие и пластические, так и жидкие и газообразные тела.
Раздел теоретической механики, занимающийся движениями такого рода изменяемых сред, носит наименование механики сплошных сред, а часть ее, относящаяся к жидким и газообразным средам, - механики жидкости и газа. Этот термин получил в последнее время широкое распространение, придя на смену ранее употреблявшемуся термину гидромеханика, включавшему в себя как собственно механику жидкости (от греческого «хидрос» - вода), так и механику газов, в частности воздуха. Развитие авиации вызвало особый интерес к вопросам силового взаимодействия воздуха с движущимися в нем телами (теория крыла и винта) и движения тел в воздухе при наличии этих взаимодействий (динамика полета); так появилась аэромеханика. Углубление знаний в области движения сжимаемых жидкостей (газов) привело к возникновению газовой динамики, а применение ее результатов к авиации и ракетной технике положило основание к созданию новой дисциплины - аэротермодинамики, под которой сейчас понимают механику и термодинамику газа, движущегося с большими сверхзвуковыми и гиперзвуковыми скоростями.
Современный этап развития механики жидкости и газа, так же как и вообще механики сплошной среды, характеризуется значительно возросшей вязью с физикой. Требования главным образом ракетной техники поставили перед механикой жидкости и газа новые задачи, определяемые, с одной стороны, гиперзвуковыми (космическими) скоростями движения тел сквозь атмосферу в широком диапазоне высот, с другой - движениями газов в камерах горения и соплах двигателей. В этих условиях приходится иметь дело со сверхвысокими температурами, вызывающими диссоциацию и ионизацию газа, явлениями, связанными с разреженностью атмосферы на больших высотах полета, с разрушением (плавлением и испарением) твердой поверхности обтекаемого газом тела, излучением тепла поверхностью тела и самим газом, с движениями смесей реагирующих между собой газов (например, при горении) и многими другими физическими и химическими процессами. При использовании потоков ионизированного газа (плазмы) для непосредственного превращения тепла в электрическую энергию в магнитогидродинамическом генераторе необходимо рассматривать взаимодействие движущегося газа не только с твердыми телами, но и с электрическими и магнитными полями (магнитная гидродинамика). Все сказанное о газе относится, хотя и в несколько меньшей степени, и к жидкостям. В настоящее время жидкости широко используются как носители тепла в атомной энергетике; процессы тепломассопереноса в жидкостях лежат в основе многих главным образом химических производств, металлургия с успехом применяет магнитную гидродинамику для управления потоками жидких металлов в процессах плавки и др.
Вот почему предмет механики жидкости и газа сейчас уже нельзя сводить к одному механическому движению жидкости и газа и механическому взаимодействию их с твердыми телами. Механические движения сопровождаются общими движениями материи - сложными физическими процессами, которыми не только нельзя пренебрегать, как это делалось ранее, а наоборот, следует иметь в виду, что эти процессы во многих практических задачах играют главную роль, оставляя механическим движениям вспомогательное, подчиненное значение.
Кроме уже упомянутого ранее основного свойства принятой модели жидкой и газообразной среды - ее сплошности (непрерывности распределения массы и физико-механических характеристик среды), для динамики существенно второе основное свойство жидкой или газообразной среды - ее легкая подвижность, или текучесть, - выражающееся в том, что для большинства жидкостей и всех газов касательные напряжения (внутреннее трение) в среде отличны от нуля только при наличии относительного движения сдвига между слоями среды. При относительном покое внутреннее трение отсутствует. В этом заключается отличие жидкой или газообразной среды, например, от упругой среды, в которой касательные напряжения, обусловленные наличием деформаций (а не скоростей деформаций) сдвига, отличны от нуля и при относительном покое среды.
Обладая общими свойствами непрерывности и легкой подвижности, жидкости и газы отличаются друг от друга по физическим свойствам, связанным с различием во внутренней их молекулярной структуре.
Предполагая отсутствие внутреннего трения и процессов переноса, приходят к модели идеальной жидкости, которая оказывается пригодной для описания многих важных сторон явлений обтекания тел, но по самой своей сущности не может, например, объяснить происхождения сопротивления тел, разогревания жидкостей и газов за счет диссипации механической энергии в тепло, тепломассопереноса в жидкости и др. Для описания этих явлений необходимо пользоваться более сложной моделью вязкой, проводящей тепло и обладающей способностью переноса примесей (диффузии) жидкости или газа.
1. Продольное обтекание тел вращения

Для расчета внешнего осесимметричного обтекания тел вращения (см. Приложение 1) возьмем в меридианальных плоскостях (r, x) эллиптическую систему координат (, ), связанную с (r, x) соотношениями
х = с ch cos , 0 ,
r = с sh sin , 0 2,
где величина c представляет расстояние фокусов семейства координатных линий - сoфокусных эллипсов и гипербол - от начала координат.
Положим
ch = , cos = , l , -1 1;
тогда связь между координатами (r, x) и (, ) будет иметь вид
х = с, r = с 2 - 1 1 - 2. (1)

Определив производные

найдем коэффициенты Ламе Е. Уиттекер и Г. Ватсон, Курс современного анализа, ч. II, стр. 85

(2)

После этого уже нетрудно составить и основное дифференциальное уравнение Лапласа для потенциала скоростей. Согласно формуле Лойцянский Л.Г., Механика жидкости и газа, Главная редакция физико-математической литературы издательства «Наука», М., 1987 г.

(*)

получим (3)

Будем искать частное решение этого уравнения в виде произведения двух функций от переменных и в отдельности

= L() M(); (4)

тогда в уравнении (2) переменные разделятся и из равенства


в силу независимости и будет следовать, что каждая из частей равенства должна быть постоянной. Полагая эту постоянную равной n (n+1), где n - целое положительное число, получим для определения L() и М() два обыкновенных линейных уравнения второго порядка лежандрова типа
(5)
Этим уравнениям удовлетворяют Е. Уиттекер и Г. Ватсон, Курс современного анализа, ч. II, с. 91 два класса независимых решений:
функции Лежандра 1-го рода - полиномы Лежандра Pn (х), определяемые равенствами
P0(x) = 1, Р1(х) = х, P2(x) = 0.5 (Зх2-1), P3(x) = 0.5 (5x3-3x),

и рекуррентным соотношением для вычисления последующих полиномов
(n + 1) Pn +1(х) = (2n + 1) хРn(х) - n-1(х);

2) функции Лежандра 2-го рода Qn(х), определяемые равенствами
и рекуррентным соотношением
(n + 1) Qn+1(х) = (2n + 1) xQn(х) - nQn-1(х),
совпадающим с предыдущим соотношением для полиномов Лежандра.
Представим решение уравнения (3) как сумму двух потенциалов: 1) потенциала однородного потока, набегающего на тело со скоростью U; этот потенциал по первой из формул (1) будет равен = Ux = Uc. и 2) потенциала ' скоростей возмущений, который выразим суммой частных решений (4).
Функция Pn(х), как полином n-й степени, обращается в бесконечность при бесконечно возрастающем аргументе, функция же Qn(х) при этом стремится к нулю, но зато логарифмически бесконечна при х = ± 1. В случае внешнего обтекания тела координата = ch может достигать бесконечных значений, а координата ограничена. Примем во внимание, что потенциал скоростей возмущенного движения (т.е. обтекания за вычетом однородного потока со скоростью, равной скорости на бесконечности) должен стремиться к нулю при удалении от поверхности тела, причем .
Из приведенных соображений следует, что искомые частные решения должны иметь вид произведений Qn() Pn() (n = 1, 2,);
подчеркнем, отсчет n при суммировании начинается с единицы, а не с нуля. Это подтверждается наличием следующих очевидных асимптотических равенств, справедливых при больших значениях , а, следовательно, согласно (1), и R = = х2 + r2, имеющего тот же порядок, что и :
Таким образом, будем иметь правильный порядок убывания ' на бесконечности, если положим
, (6)
где An - постоянные коэффициенты, зависящие от формы поверхности тела.
Складывая потенциалы и ', получим искомый потенциал скоростей продольного обтекания тела вращения со скоростью на бесконечности, равной U,
(7)
Для определения коэффициентов An найдем выражение функции тока . По формуле (2) будем иметь
или после подстановки разложения (7)
Переписывая второе равенство в виде
подставим под знак суммы выражение для Pn из основного дифференциального уравнения функций Лежандра (5)
Тогда будем иметь
Интегрируя по и добавляя необходимую функцию от , получим окончательное выражение для функции тока
(8)
Уравнение нулевой поверхности тока будет
(9)
Сравнивая его с заданным уравнением профиля тела вращения в эллиптических координатах, можно определить величины коэффициентов Аn, что и решает задачу. Конечно, именно этот пункт и является наиболее сложным с вычислительной стороны.
Имея выражение потенциала скоростей, найдем скорость по формуле (10).
2. Поперечное обтекание тел вращения
Наряду с продольным обтеканием тел вращения представляет интерес и поперечное обтекание, перпендикулярное (Приложение 1, б) к оси симметрии тела. Из сложения этих двух потоков можно получить обтекание тела вращения под любым углом.
В этом случае уже не получается осесимметричного движения. Уравнение Лапласа, определяющее потенциал скоростей, будет в ортогональной системе криволинейных координат, согласно (*), иметь вид
Сохраняя ту же систему координат (, , ), что и в случае осесимметричного обтекания тела вращения, и используя выражения коэффициентов Ламе (2), перепишем предыдущее уравнение в форме
(13)

Будем искать решение этого уравнения в виде произведения двух функций

= N(, ) Е();

тогда, подставляя последнее выражение в уравнение (13) и разделяя функции независимых переменных, получим систему уравнений (k - произвольное число, которое будем считать положительным и целым)

Первое уравнение имеет решение: Е = A cos k + В sin k;

второе, если положить N = L() М() и разделить переменные, может быть приведено к системе уравнений

имеющей в качестве частных решений так называемые присоединенные функции Лежандра Е. Уиттекер и Г. Ватсон, Курс современного анализа, ч. II, стр. 119.

(14)

Комбинируя эти функции так, чтобы выражение потенциала скоростей возмущенного движения было ограниченным при , получим общее выражение потенциала скоростей

здесь последнее слагаемое представляет собой потенциал скоростей набегающего на тело однородного потока со скоростью на бесконечности V, направленной параллельно оси Оу (Приложение 1, б).

Полагая в только что выведенной общей формуле потенциала

An1 = сVСn, An2 = An3 = = 0, Bn1 = Вn2 = = 0,

т.е. довольствуясь решением, содержащим cos , и, кроме того, представляя у по формулам, помещенным в начале § 1, как функцию , и
получим следующее выражение потенциала скоростей поперечно набегающего со скоростью V вдоль оси Оу потока:
или, используя определение присоединенных функций Лежандра (14),
(15)
Для определения постоянных Сn, как и ранее, следует составить граничное условие на заданной поверхности обтекаемого тела. В этом случае неосесимметричного движения функция тока отсутствует и приходится непосредственно вычислять нормальную скорость Vn = /n и приравнивать ее нулю.
Несколько облегчая вычисления, выпишу в выбранной системе координат (, ) условие, что при непроницаемости поверхности обтекаемого тела элемент дуги его меридианного сечения параллелен составляющей скорости в меридианной плоскости (условие скольжения жидкости по поверхности тела):
или, вспоминая выражения элементов дуг координатных линий и и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.