На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Модуляция с расширением спектра. Прямое расширение спектра

Информация:

Тип работы: курсовая работа. Добавлен: 08.07.2012. Сдан: 2010. Страниц: 4. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство  транспорта Российской Федерации
Государственное образовательное учреждение
Высшего профессионального образования
Волжская  государственная академия водного  транспорта 
 
 
 
 

Кафедра информатики, систем управления и телекоммуникаций 
 
 
 
 
 
 

Курсовая работа по теме:
«Модуляция  с расширением спектра. Прямое расширение спектра» 
 
 

Выполнил 
студент группы Р-312
Аминов А.Р. 

Проверил 
Преображенский А.В. 
 
 
 
 
 
 
 
 
 
 

Н.Новгород
2009г.
 

          Модуляция с расширением  спектра.
       Повсеместное  распространение беспроводных сетей, развитие инфраструктуры хот-спотов, появление мобильных технологий со встроенным беспроводным решением (Intel Centrino) привело к тому, что конечные пользователи (не говоря уже о корпоративных клиентах) стали обращать все большее внимание на беспроводные решения. Такие решения рассматриваются, прежде всего, как средство развертывания мобильных и стационарных беспроводных локальных сетей и средство оперативного доступа в Интернет. Однако конечный пользователь, не являющийся сетевым администратором, как правило, не слишком хорошо разбирается в сетевых технологиях, поэтому ему трудно сделать выбор при покупке беспроводного решения, особенно учитывая многообразие предлагаемых сегодня продуктов.
       Бурное  развитие технологии беспроводной связи  привело к тому, что пользователи, не успев привыкнуть к одному стандарту, вынуждены переходить на другой, предлагающий еще более высокие скорости передачи. Речь, конечно же, идет о семействе протоколов беспроводной связи, известном как IEEE 802.11, куда входят следующие протоколы: 802.11, 802.11b, 802.11b+, 802.11a, 802.11g. В последнее время стали говорить и о расширении протокола 802.11g.
       Различные типы беспроводных сетей отличаются друг от друга и радиусом действия, и поддерживаемыми скоростями соединения, и технологией кодирования данных. Так, стандарт IEEE 802.11b предусматривает максимальную скорость соединения 11 Мбит/с, стандарт IEEE 802.11b+ - 22 Мбит/с, стандарты IEEE 802.11g и 802.11a - 54 Мбит/с.
       Будущее стандарта 802.11a довольно туманно. Наверняка  в России и в Европе этот стандарт не получит широкого распространения, да и в США, где он сейчас используется, скорее всего, в ближайшее время произойдет переход на альтернативные стандарты. А вот новый стандарт 802.11g имеет значительные шансы завоевать признание во всем мире. Другое преимущество нового стандарта 802.11g заключается в том, что он полностью совместим со стандартами 802.11b и 802.11b+, то есть любое устройство, поддерживающее стандарт 802.11g, будет работать (правда, на меньших скоростях соединения) и в сетях стандарта 802.11b/b+, а устройство, поддерживающее стандарт 802.11b/b+ — в сетях стандарта 802.11g, хотя и с меньшей скоростью соединения.
       Совместимость стандартов 802.11g и 802.11b/b+ обусловлена, во-первых, тем, что они предполагают использование одного и того же частотного диапазона, а во-вторых, что все режимы, предусмотренные в протоколах 802.11b/b+, реализованы и в стандарте 802.11g. Поэтому стандарт 802.11b/b+ можно рассматривать как подмножество стандарта 802.11g.
Физический  уровень протокола 802.11
       Обзор протоколов семейства 802.11b/g целесообразно  начать именно с протокола 802.11, который, хотя уже и не встречается в  чистом виде, в то же время является прародителем всех остальных протоколов. В стандарте 802.11, как и во всех остальных стандартах данного семейства, предусмотрено использование частотного диапазона от 2400 до 2483,5 МГц, то есть частотный диапазон шириной 83,5 МГц, который, как будет показано далее, разбит на несколько частотных подканалов.
Технология  расширения спектра
       В основе всех беспроводных протоколов семейства 802.11 лежит технология уширения спектра (Spread Spectrum, SS). Данная технология подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире спектра первоначального сигнала. То есть спектр сигнала как бы «размазывается» по частотному диапазону. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала — энергия сигнала также «размазывается» по спектру. В результате максимальная мощность преобразованного сигнала оказывается значительно ниже мощности исходного сигнала. При этом уровень полезного информационного сигнала может в буквальном смысле сравниваться с уровнем естественного шума. В результате сигнал становится, в каком то смысле, «невидимым» — он просто теряется на уровне естественного шума.
       Собственно, именно в изменении спектральной энергетической плотности сигнала  и заключается идея уширения спектра. Дело в том, что если подходить к проблеме передачи данных традиционным способом, то есть так, как это делается в радиоэфире, где каждой радиостанции отводится свой диапазон вещания, то мы неизбежно столкнемся с проблемой, что в ограниченном радиодиапазоне, предназначенном для совместного использования, невозможно «уместить» всех желающих. Поэтому необходимо найти такой способ передачи информации, при котором пользователи могли бы сосуществовать в одном частотном диапазоне и при этом не мешать друг другу. Именно эту задачу и решает технология уширения спектра.
   Преимущества  систем с расширением  спектра
       - Высокая помехоустойчивость. При ограниченной полосе спектральной плотности помехи отношение сигнал /шум увеличивается в  Gp= Пш /П раз, где П –полоса исходного сигнала, Пш - полоса сигнала после расширения спектра,  Gp - коэффициент расширения спектра. Если спектр помехи равномерен (белый шум), отношение сигнал /шум не улучшается.
       - Конфиденциальность связи. Сообщение нельзя прочитать, не зная алгоритма расширения спектра.
       - Возможность одновременной передачи многих сообщений на одной несущей частоте в системе с кодовым разделением каналов (CDMA (англ. Code Division Multiple Access) — множественный доступ с кодовым разделением. 
Каналы трафика при таком способе разделения среды создаются присвоением каждому пользователю отдельного числового кода, который распространяется по всей ширине полосы. Нет временного разделения, все абоненты постоянно используют всю ширину канала. Полоса частот одного канала очень широка, вещание абонентов накладывается друг на друга но, поскольку их коды отличаются, они могут быть дифференцированы. 
Технология множественного доступа с кодовым разделением каналов известна давно. В СССР первая работа, посвящённая этой теме, была опубликована ещё в 1935 году Д. В. Агеевым
. )

       - Возможность передачи маломощного сигнала. Энергия сигнала сохраняется высокой за счет увеличения длительности сигнала. Обеспечивается энергетическая скрытность связи. Сигнал не обнаруживается, а воспринимается как шум.
       - Высокая разрешающая способность по времени (чем шире спектр, тем круче фронт сигнала). Момент начала сигнала определяется очень точно, что важно для систем измерения расстояния по времени прохождения сигнала и для синхронизации передатчика и приемника.
   Наиболее  распространенные методы расширения спектра
       - Прямое расширение спектра (direct sequencing) с использованием двоичной псевдослучайной последовательности (ПСП), модулирующей сигнал. Ширина спектра ограничивается минимальной технически реализуемой длительностью элементарного символа ПСП. Спектр расширяется до десятков мегагерц.
       - Скачкообразная перестройка несущей частоты (frequency hopping). Обычно используется М-арная частотная манипуляция. М символам соответствуют М частот, разнесенных друг от друга на интервал  Df. Центральная частота f0  этого диапазона  изменяется скачками под управлением ПСП в полосе перестройки несколько раз за время передачи одного символа сообщения (быстрая перестройка) или с интервалом, равным длительности нескольких символов (медленная перестройка).  Из-за скачков частоты трудно сохранить когерентность сигнала. Поэтому демодуляция обычно некогерентная. Для обеспечения ортогональности сигналов расстояние между частотами должно удовлетворять условию  Df = m/ Ts, m –целое число. Спектр может расширяться до нескольких гигагерц: коэффициент расширения спектра выше, чем при прямом расширении.
   Прямое  расширение спектра
       При потенциальном кодировании информационные биты — логические нули и единицы  — передаются прямоугольными импульсами напряжений. Прямоугольный импульс длительности T имеет спектр, ширина которого обратно пропорциональна длительности импульса. Поэтому чем меньше длительность информационного бита, тем больший спектр занимает такой сигнал.
       Для преднамеренного уширения спектра  первоначально узкополосного сигнала  в технологии DSSS в каждый передаваемый информационный бит (логический 0 или 1) в буквальном смысле встраивается последовательность так называемых чипов. Если информационные биты — логические нули или единицы — при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип — это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n-раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.
Рис. 1. Использование технологии уширения спектра позволяет предавать  данные на уровне естественного шума.
       Чиповые последовательности, встраиваемые в  информационные биты, называют шумоподобными  кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.
       Как уширить спектр сигнала и сделать  его неотличимым от естественного  шума, понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако, возникает вопрос: а как  такой сигнал принимать? Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так то просто, если вообще возможно. Оказывается, возможно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника.

   Основные  требования к ПСП
       - Непредсказуемость появления знаков 1 и 0, благодаря чему спектр сигнала становится равномерным, а определение алгоритма формирования ПСП по ее участку ограниченной длины – невозможным.
       - Наличие большого набора разных  ПСП одинаковой длины для построения  систем с кодовым разделением каналов.
       - Хорошие корреляционные свойства  ПСП, описываемые функциями автокорреляции (ФАК) и взаимной корреляции (ФВК), периодическими и апериодическими.
       Характеристики  псевдослучайных  последовательностей (ПСП)
       Характеристиками  ПСП являются функции автокорреляции (ФАК) и взаимной корреляции (ФВК), периодические и апериодические. ФАК и ФВК  вычисляются подсчетом разности числа совпадающих и не совпадающих разрядов сравниваемых ПСП при сдвигах одной из них.
       Периодические ФАК и ФВК
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.