На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 26.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет
имени Франциска Скорины"
математический факультет
Кафедра алгебры и геометрии
Произведение двух групп
Курсовая работа
Исполнитель:
студентка группы H.01.01.01 М-31
Закревская С.А.
Научный руководитель:
доктор физико-математических наук,
профессор кафедры Алгебры и геометрии
Монахов В. С.
Гомель 2005
Содержание
Введение
1 О произведении двух групп, одна из которых содержит циклическую подгруппу индекса
2 О произведении двух групп с циклическими подгруппами индекса 2
3 Произведение разрешимой и циклической групп
3.1. Вспомогательные результаты
3.2. Доказательства теорем 1 и 2
Заключение
Список литературы
Введение
Данную работу можно рассматривать как продолжение трудов Б. Хупперта и В. Скотта. В ней приводятся свойства конечных групп, являющихся произведением двух групп, а именно являющихся произведением двух групп, одна из которых содержит циклическую подгруппу индекса , произведением двух групп с циклическими подгруппами индекса 2, произведением разрешимой и циклической групп.
Рассматриваются вопросы разрешимости, сверхразрешимости и изоморфизма конечных групп, с приведенными выше свойствами и приводится описание двух классов неразрешимых факторизуемых групп. Так же приводятся доказательства следующих теорем:
Теорема 1.1 . Если и - группы с циклическими подгруппами индексов , то конечная группа разрешима.
Теорема 1.2 . Пусть - группа Шмидта, а - группа с циклической подгруппой индекса . Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .
Теорема 1.3 . Пусть - 2-разложимая группа, а группа имеет циклическую инвариантную подгруппу нечетного порядка и индекса 4. Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .
Теорема 2.1 . Пусть конечная группа , где и - группы с циклическими подгруппами индексов . Тогда разрешима, и для любого простого нечетного .
Теорема 2.2 . Если группы и содержат циклические подгруппы нечетных порядков и индексов , то конечная группа сверхразрешима.
Теорема 2.3 . Пусть конечная группа , где - циклическая подгруппа нечетного порядка, а подгруппа содержит циклическую подгруппу индекса . Если в нет нормальных секций, изоморфных , то сверхразрешима.
Теорема 3.1 . Пусть конечная группа является произведением разрешимой подгруппы и циклической подгруппы и пусть . Тогда , где - нормальная в подгруппа, и или для подходящего .
Теорема 3.2 . Конечная группа, являющаяся произведением 2-нильпотентной подгруппы и циклической подгруппы, непроста. Если циклический фактор имеет нечетный порядок, то группа разрешима.
Теорема 3.3 . Если - простая группа, где - холловская собственная в подгруппа, а - абелева -группа, то есть расширение группы, изоморфной секции из , с помощью элементарной абелевой 2-группы. В частности, если циклическая, то есть расширение абелевой группы с помощью элементарной абелевой 2-группы.
1. О произведении двух групп, одна из которых содержит циклическую подгруппу индекса
Доказывается, что конечная группа разрешима, если группы и содержат циклические подгруппы индексов . Приводится описание двух классов неразрешимых факторизуемых групп. Библ. 18 назв.
В работе Б. Хупперт установил разрешимость конечной группы, которая является произведением двух диэдральных подгрупп. В. Скотт получил разрешимость группы , допустив в качестве множителей и еще так называемые дициклические группы. Диэдральные и дициклические группы содержат циклические подгруппы индекса 2, но не исчерпывают весь класс групп с циклическими подгруппами индекса 2. В настоящей заметке доказана
Теорема 1 . Если и - группы с циклическими подгруппами индексов , то конечная группа разрешима.
Если подгруппа нильпотентна, а в есть циклическая подгруппа индекса 2, то, как показали H. Ито и Б. Хупперт, конечная группа разрешима. Дополнением этого результата являются теоремы 2 и 3.
Теорема 2 . Пусть - группа Шмидта, а - группа с циклической подгруппой индекса . Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .
обозначает наибольшую разрешимую инвариантную в подгруппу. Группой Шмидта называется ненильпотентная группа, все собственные подгруппы которой нильпотентны.
Теорема 3 . Пусть - 2-разложимая группа, а группа имеет циклическую инвариантную подгруппу нечетного порядка и индекса 4. Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .
Частным случаем теоремы 3, когда - абелева, а имеет порядок , - простое число, является теорема 8 Б. Хупперта.
Доказательства теорем 1--3 и составляют содержание настоящей заметки.
Рассматриваются только конечные группы. Все используемые определения и обозначения стандартны, их можно найти в обзоре С. А. Чунихина и Л. А. Шеметкова.
Вначале докажем несколько лемм.
Лемма 1 . Пусть в группе существует циклическая подгруппа индекса . Тогда каждая подгруппа и фактор-группа обладает, циклической подгруппой индекса . Доказательство осуществляется непосредственной проверкой.
Лемма 2 . Пусть , - собственная подгруппа группы , - подгруппа четного порядка с циклической силовской 2-подгруппой. Если , то содержит подгруппу индекса 2.
Доказательство. Если содержит инвариантную в подгруппу , то фактор-группа удовлетворяет условиям леммы. По индукции обладает подгруппой индекса 2, поэтому и в есть подгруппа индекса 2.
Пусть не содержит инвариантных в подгрупп . Тогда представление группы подстановками правых смежных классов по есть точное степени , где . Группу можно отождествить с ее образом в симметрической группе степени . Так как в силовская 2-подгруппа циклическая, то , где - инвариантное 2-дополнение. Пусть , . , и . Подстановка разлагается в произведение циклов
т. е. подстановка имеет циклов, каждый длины . Декремент подстановки равен и есть нечетное число, поэтому - нечетная подстановка. Теперь , а так как индекс в равен 2, то - подгруппа индекса 2 в группе .
Лемма 2 обобщает лемму А. В. Романовского.
Замечание. Простая группа является произведением двух подгрупп и , причем , а - группа порядка с циклической силовской 2-подгруппой. Этот пример показывает, что требование отбросить нельзя.
Лемма 3 . Пусть - дважды транзитивная группа подстановок на множестве и пусть - стабилизатор некоторой точки . Тогда все инволюции из центра содержатся в .
Доказательство. Пусть . Допустим, что существует , причем . Так как транзитивна на , то . Ho , поэтому и - тождественная подстановка. Противоречие. Следовательно, фиксирует только . Теперь подстановка содержит только один цикл длины 1, а так как - инволюция, то нечетен. Но , поэтому существует силовская 2-подгруппа из с и . Если , то , отсюда и , т. е. . Теперь и из теоремы Глаубермана следует, что .
Лемма 4 . Пусть центр группы имеет четный порядок и силовская 2-подгруппа из либо циклическая, либо инвариантна в . Если - группа с циклической подгруппой индекса , то группа непроста.
Доказательство. Пусть - циклическая подгруппа в , для которой , а - максимальная в подгруппа, содержащая . Тогда . Если , то и по лемме С. А. Чунихина группа непроста. Значит, .
Допустим, что порядок нечетен. Если , то . Если , то ввиду леммы 2 и поэтому опять . Рассмотрим представление подстановками смежных классов по . Так как - максимальная в подгруппа, то - примитивная группа подстановок степени . Если - простое число, то либо разрешима, либо дважды транзитивна. Если - составное число, то, так как - регулярная группа подстановок при этом представлении, - опять дважды транзитивна. Из леммы 3 следует, что непроста.
Пусть порядок четен. Если , то непроста по лемме 2. Значит, и . Пусть - силовская 2-подгруппа из . Если инвариантна в , то инвариантна и в . Следовательно, - циклическая группа. Но не является силовской в , поэтому содержится как подгруппа индекса 2 в некоторой группе . Теперь для инволюции из центра имеем , т. е. не максимальная в . Противоречие.
Следствие. Пусть группа , где группа содержит циклическую подгруппу индекса . Если - 2-разложимая группа четного порядка, то группа непроста.
Лемма 5 . Пусть группа содержит циклическую инвариантную подгруппу нечетного порядка и индекса 2. Если - 2-разложимая группа, то группа разрешима.
Доказательство. Применим индукцию к порядку . Если , то ввиду леммы 1 фактор-группа удовлетворяет условиям леммы. По индукции, разрешима, отсюда разрешима и .
Пусть . Если - циклическая, то разрешима по теореме В. А. Ведерникова. Поэтому , - циклическая подгруппа индекса 2, . Пусть , где - силовская 2-подгруппа из , - ее дополнение. Если , то разрешима. Теперь и можно считать силовской 2-подгруппой в . Так как и , то . Пусть и . Тогда и . По лемме С. А. Чунихина подгруппа максимальна в и . Представление группы подстановками смежных классов по подгруппе дважды транзитивное: если - простое число, если - составное. Из леммы 3 вытекает теперь, что .Противоречие.
Доказательство теоремы 1 . Применим индукцию к порядку группы G. Пусть и - циклические инвариантные подгруппы в и в соответственно, чьи индексы равны 1 или 2, а и - те силовские 2-подгруппы из и , для которых и есть силовская 2-подгруппа . Будем считать, что . Если , то и разрешима по теореме Ито-Хупперта. Поэтому в дальнейшем полагаем, что . Ввиду леммы 1 каждая фактор-группа удовлетворяет условиям теоремы, поэтому
Допустим, что . Если , то и . Так как разрешима, то . Если , то и разрешима.
Пусть теперь . Тогда и . Так как не является силовской подгруппой в , то содержится как подгруппа индекса 2 в некоторой 2-группе . Обозначим через силовскую 2-подгруппу из . Очевидно, что инвариантна в .
Предположим, что и пусть - инволюция из . В все подгруппы характеристические и инвариантна в , поэтому и . Пусть - максимальная в подгруппа, которая содержит . Тогда разрешима по индукции. Если , то содержится в и . Значит, . Так как - собственная в подгруппа, то , и . Теперь - дважды транзитивная группа степени на множестве смежных классов по : если - простое число, то применимо утверждение из, стр. 609; если составное. Из леммы 3 получаем, что . Противоречие.
Следовательно, . Если , то и .Так как не содержит подгрупп, инвариантных в , то представление группы подстановками по подгруппе - точное степени 4. Поэтому - группа диэдра порядка 8, и . В этом случае неабелева. Напомним, что и . Таким образом, для силовской 2-подгруппы из имеем: - группа порядка 4 или неабелева группа порядка 8 (если ).
Предположим, что порядки групп и делятся одновременно на нечетное простое число и пусть и - силовские -подгруппы из и соответственно. Так как инвариантна в , a инвариантна в , то и - силовская -подгруппа в . Без ограничения общности можно считать, что . По теореме VI.10.1 из группа содержит неединичную подгруппу , инвариантную в . Но теперь и , а так как инвариантна в , a разрешима, то по лемме С. А. Чунихина. Противоречие. Следовательно, порядки и не имеют общих нечетных делителей. В частности, в группе силовские подгруппы для нечетных простых чисел циклические.
Пусть - минимальная инвариантная в подгруппа и - силовская 2-подгруппа из , которая содержится в . Так как , то неразрешима и . Подгруппа даже простая потому, что силовские подгруппы по нечетным простым числам циклические.
Пусть вначале . Тогда и неабелева. По теореме П. Фонга из группа диэдральная или полудиэдральная. Но в этих случаях . Непосредственно проверяется, что диэдральная и полудиэдральная группа порядка 16 не является произведением двух групп порядка 4.
Предположим теперь что . Тогда - элементарная абелева подгруппа или диэдральная. Если абелева, то или группа Янко порядка 175560. Так как неабелева, то и индекс в четен. Группа разрешима, поэтому и или . Ho группа порядка 3, a . Противоречие. Если - диэдральная группа порядка 8, то - нечетное простое число или . Но группы и не допускают нужной факторизации, поэтому - собственная в подгруппа. Теперь или . Если , то - диэдральная группа порядка 16, а так как , то . Противоречие. Если , то и в существует подгруппа порядка или .
Пусть, наконец, . Тогда и . Так как фактор-группа разрешима по индукции, то и . Используя самоцентрализуемость силовской -подгруппы в , нетрудно показать, что не допускает требуемой факторизации. Теорема доказана.
Доказательство теоремы 2 . Допустим, что теорема неверна и группа - контрпример минимального порядка. Фактор-группа группы Шмидта есть либо группа Шмидта, либо циклическая -группа. Поэтому в силу индукции и теоремы 1 мы можем считать, что . Пусть - произвольная минимальная инвариантная в подгруппа. Если , то , а так как - нильпотентная группа, то разрешима по теореме Ито--Хупперта или по теореме Виландта--Кегеля. Отсюда разрешима и . Противоречие. Значит, , в частности, разрешима. Допустим, что . Тогда и удовлетворяет условиям леммы. Поэтому изоморфна подгруппе группы , содержащей для подходящего . Так как есть прямое произведение изоморфных простых неабелевых групп, то и . Отсюда . Подгруппа инвариантна в так как , то разрешима и . Теперь изоморфна некоторой группе автоморфизмов , т. е. из заключения теоремы. Противоречие. Значит, .
Таким образом, если - произвольная инвариантная в подгруппа, то .
Пусть , - инвариантная силовская -подгруппа, - силовская -подгруппа. Через обозначим циклическую подгруппу в , для которой . Допустим, что . В этом случае и если - подгруппа индекса 2 в , то - циклическая подгруппа индекса 2 в . По теореме 1 группа разрешима. Противоречие. Значит, . Теперь, если в есть инвариантная подгруппа четного индекса, то есть группа Шмидта с инвариантной силовской 2-подгруппой, что противоречит лемме 1.
Следовательно, и в нет инвариантных подгрупп четного индекса.
Допустим, что , тогда - группа нечетного порядка. Силовская 2-подгруппа из является силовской подгруппой в и по результату В. Д. Мазурова группа диэдральная или полудиэдральная. Если диэдральная, то по теореме 16.3 группа изоморфна или подгруппе группы . Так как не допускает требуемой факторизации, то следует из заключения теоремы. Противоречие. Значит, - полудиэдральная группа. Если - центральная инволюция из , то , поэтому и разрешима. По теореме Мазурова группа изоморфна или . Нетрудно проверить, что и не допускают требуемой факторизации. Значит, .
Пусть - максимальная в подгруппа, содержащая . Тогда, если , то и содержит подгруппу , инвариантную в по лемме Чунихина. В этом случае, и . Противоречие. Следовательно, .
Допустим, что не является силовской 2-подгруппой в . Тогда немаксимальна в , а так как и , то по лемме 2 порядок нечетен. Теперь и содержит подгруппу индекса 2. Противоречие.
Таким образом, - силовская 2-подгруппа группы . Теперь, и - максимальная в подгруппа. Представление подстановками смежных классов по дважды транзитивное и по лемме 3 порядок центра нечетен. Отсюда следует, что - абелева группа.
Пусть - минимальная инвариантная в подгруппа. Группа не является -группой, поэтому некоторая силовская в подгруппа циклическая и - простая группа. Теперь можно применить результат Уолтера. Так как и группе Янко и в группах типа и нормализатор силовской 2-подгруппы имеет порядок , a , то изоморфна , где или . Фактор-группа разрешима, поэтому и изоморфна некоторой группе автоморфизмов , т. е. из заключения теоремы. Противоречие. Теорема доказана.
Доказательство теоремы 3 . Пусть группа - контрпример минимального порядка, - циклическая подгруппа в и , где . Пусть , где - силовская 2-подгруппа , а - ее 2-дополнение в . Если - силовская 2-подгруппа , то и разрешима по теореме Ведерникова. Противоречие. Теперь можно считать силовской 2-подгруппой группы .
Предположим, что . Фактор-группа и - 2-разложимая группа. Очевидно, что циклическая подгруппа нечетного порядка инвариантна в и ее индекс равен 1, 2 или 4. В первых двух случаях группа разрешима по лемме 5, поэтому разрешима и . Противоречие. Если индекс равен 4, то по индукции и учитывая, что , получаем: группа изоморфна подгруппе , содержащей для некоторых . Противоречие. Следовательно, в нет разрешимых инвариантных подгрупп, отличных от единицы.
Теперь покажем, что силовская 2-подгруппа является диэдральной группой порядка 4 или 8. Если , то , и так как неразрешима, то диэдральная. Пусть не содержится в .
Предположим, что и пусть , где - инволюция из . Теперь и . Пусть вначале и максимальна в . Тогда - дважды транзитивная группа на множестве смежных классов по подгруппе : если - простое число; если - непростое число. Из леммы 3 получаем, что . Противоречие. Пусть - максимальная в подгруппа, которая содержит . Тогда и . Кроме того, . Пусть - минимальная инвариантная в подгруппа, которая содержится в , существует по лемме Чунихина, а так как , то , а следовательно, и неразрешимы. По индукции изоморфна подгруппе , содержащей , для некоторых . Все инвариантные в подгруппы неразрешимы, поэтому , а так как - минимальная инвариантная в подгруппа, то . B силу леммы 5 , поэтому разрешима. Но тогда и изоморфна группе автоморфизмов группы , т. е. из заключения теоремы. Противоречие.
Значит, , поэтому не содержит инвариантных в подгрупп, отличных от 1. Следовательно, представление группы подстановками смежных классов по подгруппе точное степени 4. Отсюда группа есть группа диэдра порядка 8.
Таким образом, силовская 2-подгруппа в группе есть диэдральная группа порядка 4 или 8. По результату Горенштейна - Уолтера группа изоморфна , или подгруппе группы . Так как , не допускает требуемой факторизации, то группа - из заключения теоремы. Противоречие. Теорема доказана.
В заключение отметим, что, используя технику доказательств теорем 1--3 и следствие леммы 4, можно получить описание неразрешимых групп при условии, что - 2-разложимая группа, а в группе существует циклическая подгруппа индекса .
2. О произведении двух групп с циклическими подгруппами индекса 2
В 1953 г. Б. Хупперт установил разрешимость конечной группы, которая является произведением двух диэдральных подгрупп. Развивая этот результат, В. Скотт получил разрешимость конечной группы , допустив в качестве множителей еще так называемые дициклические группы. Эти результаты достаточно подробно изложены в монографии. Диэдральные и дицикдические группы содержат циклические подгруппы индекса 2, но далеко не исчерпывают весь класс групп с циклическими подгруппами индекса 2.
В 1974 г. автор установил разрешимость конечной группы при условии, что факторы и содержат циклические подгруппы индексов 2, тем самым решив задачу, рассматриваемую Хуппертом и Скоттом. В настоящей заметке показывается, что 2-длина таких групп не превышает 2, а -длина равна 1 для любого нечетного . Эти оценки точные, на что указывает пример симметрической группы . Получены также два признака сверхразрешимости конечной факторизуемой группы.
Все встречающиеся определения и обозначения общеприняты. В частности, - множество простых делителей порядка , a - циклическая группа порядка .
Лемма 1 . Метациклическая группа порядка для нечетного простого неразложима в полупрямое произведение нормальной элементарной абелевой подгруппы порядка и подгруппы порядка .
Доказательство. Допустим противное и пусть - метациклическая группа порядка , разложимая в полупрямое произведение нормальной элементарной абелевой подгруппы порядка и подгруппы порядка , - нечетное простое число. Ясно, что неабелева. Если содержит нормальную подгруппу поря и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.