На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Статья Два варианта доказательства теоремы. Приведенные преобразования равенства Ферма над множеством натуральных чисел показывают, что с помощью конечного числа арифметических действий оно всегда приводится к тождеству, что и доказывает теорему.

Информация:

Тип работы: Статья. Предмет: Математика. Добавлен: 14.04.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


4
Великая теорема Ферма - два коротких доказательства
Бобров А.В.
123098, г. Москва, ул. Маршала Новикова, д.10, корп. 1, кв. 15
Контактный телефон - 193-42-34
Последняя теорема Ферма, иногда называемая Великой, формулируется следующим образом:
В равенстве числа и не могут быть одновременно целыми положительными, если .
Предположим, такие числа существуют. Тогда должны выполняться следующие условия:
· Равенство справедливо для взаимно простых, не имеющих общих целых множителей, кроме 1, чисел и , т.е. два числа - всегда нечетные.
· Существуют числа и , или , то есть для произвольно выбранных натуральных существует бесконечное множество рациональных, действительных или комплексных чисел и , удовлетворяющих приведенному равенству, если в этом множестве выполнимы арифметические действия. Для целых числа и также будут целыми.
Вариант№1
Равенство (1)
путем последовательного деления на числа и всегда преобразуется в два многочлена (уравнения) -ой степени относительно :
(2)
(3)
Равенства (2) и (3) получены путем тождественных преобразований равенства (1), т.е. должны выполняться при одних и тех же значениях целых положительных чисел и . По определению, необходимым и достаточным условием тождественности двух многочленов над некоторым числовым полем (в нашем случае - над множеством целых чисел) является равенство коэффициентов членов, содержащих одни и те же аргументы в одинаковых степенях, то есть должно выполняться:
, , … , (4)
Из (1) и (4) следует , то есть число , как общий арифметический корень уравнений (1), (2) и (3) не может быть рациональным при целых , , и .
Из равенства свободных членов следует:
, или , или
(5)
Вычитая из правой части равенства (5) левую, получим:
(6)
или, если , сократив на , получим:
(7)
Из равенства (7) следует, что для числа и не могут быть одновременно положительными.
Представленные преобразования позволяют сделать следующие выводы:
· для тождественных над множеством рациональных чисел многочленов (2) и (3) при число , как общий арифметический корень уравнений (1), (2) и (3), не может быть рациональным при целых положительных , , и ;
· многочлены (2) и (3) для и натуральных и не тождественны над множеством рациональных чисел, если делители и равенства (1) являются иррациональными, откуда следует иррациональность числа ;
· числа , и в равенстве (1) для не могут быть одновременно рациональными.
Для противоречие исчезает, коэффициенты при равны 1, а равенство свободных членов после подстановки значений и обращается в тождество:
. (8)
Если правую и левую части равенства (5) обозначить соответственно через и , где и - целые положительные числа, то многочлены (2) и (3) преобразуются в квадратные уравнения относительно :
(9),
где неизвестное обозначено общепринятым образом через , то есть .
Из условий эквивалентности или анализа причин неэквивалентности этих уравнений следуют те же выводы.
Это доказательство опубликовано в 1993 г. в журнале РАН «Вопросы истории естествознания и техники», №3.
Со стороны оппонентов не поступило никаких возражений по существу, кроме утверждения, что в используемых для доказательства уравнениях известные и неизвестные величины зависят друг от друга - как будто может быть иначе. Любое аналитическое выражение, в котором присутствуют известные и неизвестные величины, есть выражение зависимости между ними, поэтому я не могу согласиться с подобным опровержением.

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.