На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 15.08.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


7
Реферат з курсу “Введение в численные методы
Тема: ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Содержание

1. Метод последовательных приближений
2. Метод Гаусса-Зейделя
3. Метод обращения матрицы
4. Триангуляция матрицы
5. Метод Халецкого
6. Метод квадратного корня
Литература
1. Метод последовательных приближений

Наиболее распространенными методами применительно к большим системам являются итерационные методы, использующие разложение матрицы на сумму матриц, и итерационные методы, использующие факторизацию матрицы, т.е. представление в виде произведения матриц.
Простая итерация: уравнение приводится к виду , например, следующим образом:
,
где и содержат произвольную матрицу коэффициентов, по возможности желательно близкую к .
Если выбрать A=H+Q так, чтобы у положительно определенной H легко находилась , тогда исходная система приводится к следующему удобному для итераций виду:
.
В этом случае, при симметричной матрице A и положительно определенной Q итерационный процесс сходится при любом начальном .
Если взять H в виде диагональной матрицы D= , в которой лишь на главной диагонали расположены ненулевые компоненты, то этот частный случай называется итерационным методом Якоби.
2. Метод Гаусса-Зейделя
Метод Гаусса-Зейделя отличается тем, что исходная матрица представляется суммой трех матриц:
.
Подстановка в и несложные эквивалентные преобразования приводят к следующей итерационной процедуре:
.
Различают две модификации: одновременную подстановку и последовательную. В первой модификации очередная подстановка выполняется тогда, когда будут вычислены все компоненты нового вектора. Во второй модификации очередная подстановка вектора выполняется в тот момент, когда будет вычислена очередная компонента текущего вектора. В векторно-матричной форме записи последовательная подстановка метода Гаусса-Зейделя выглядит так:
.
Вторая форма требует существенно меньшее число итераций.
3. Метод обращения матрицы
Эквивалентные преобразования матрицы в произведение более простых, приводящих к решению или облегчающих его получение, начнем с рассмотрения метода обращения матрицы. Так как в общем виде решение системы представляется через обратную матрицу в виде , то предположим, что
,
тогда, умножив справа равенство на матрицу A , получим
.
Отсюда можно сделать вывод, что матрицы должны последовательно сводить матрицу A к единичной. Если преобразующую матрицу выбрать так, чтобы только один ее столбец отличался от единичных векторов-столбцов, т.е. , то вектор-столбец можно сформировать таким, чтобы при умножении на текущую преобразуемую матрицу в последней i-тый столбец превратился в единичный . Для этого берут
и тогда .
Фактически это матричное произведение преобразует все компоненты промежуточной матрицы по формулам, применяемым в методе исключения Гаусса. Особенность этого процесса заключается в том, что диагональные элементы исходной и всех промежуточ и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.