Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 09.10.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


Развитие математики

Введение

„Математика ум в порядок приводит“

М. Ломоносов

История развития математики - это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.
Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много… Эти нечисловые понятия всегда ограждали сферу математики. Математика придавала законченный вид всем наукам, где она применялась. В Европе сложилось разделение на гуманитарные и естественные науки по степени влияния математики на эти части.

1. ПЕРИОД ЭЛЕМЕНТАРНОЙ МАТЕМАТИКИ

Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века. Числовые термины медленно входили в употребление рыболовов, охотников, а затем землевладельцев и торговцев.
Из дошедших до нас математических документов Востока можно заключить, что в Древнем Египте были сильны развиты отрасли математики, связанные с решением экономических задач. Папирус Райнда (ок. 2000 г. до н.э.) начинался с обещания научить "совершенному и основательному исследованию всех вещей, пониманию их сущностей, познанию всех тайн".
Фактически излагается искусство вычисления с целыми числами и дробями, в которое посвящались государственные чиновники для того, чтобы уметь решать широкий круг практических задач, таких, как распределение заработной платы между известным числом рабочих, вычисление количества зерна для приготовления такого-то количества хлеба, вычисление поверхностей и объемов и т.д. Дальше уравнений первой степени и простейших квадратных уравнений египтяне, по-видимому, не пошли. Все содержание известной нам египетской математики убедительно свидетельствует, что математические знания египтян предназначались для удовлетворения конкретных потребностей материального производства.
Египтяне пользовались двумя системами письма. Одна - иероглифическая - встречается на памятниках и могильных плитах, каждый символ изображает какой-нибудь предмет. В другой системе - иератической - использовались условные знаки, которые произошли из иероглифов в результате упрощений и стилизаций. Именно эта система чаще встречается на папирусах.
Иероглифическая система счисления имеет основание 10 и не является позиционной: для обозначения чисел 1, 10, 100 и т.д. в ней используется разные символы, каждый символ повторяется определенное число раз, и, чтобы прочитать число, нужно просуммировать значения всех символов, входящих в его запись. Таким образом, их порядок не играет роли, и они записываются либо горизонтально, либо вертикально.
Иератическая система счисления также десятичная, но специальные дополнительные символы помогают избежать повторения, принятого в иероглифической системе.
Математика Вавилона, как и египетская, была вызвана к жизни потребностями производственной деятельности, поскольку решались задачи, связанные с нуждами орошения, строительства, хозяйственного учета, отношениями собственности, исчислением времени. Сохранившееся документы показывают, что, основываясь на 60-ричной системе счисления, вавилоняне могли выполнять четыре арифметических действия, имелись таблицы квадратных корней, кубов кубических корней, сумм квадратов и кубов, степеней данного числа, были известны правила суммирования прогрессий. Замечательные результаты были получены в области числовой алгебры. Решение задач проводилось по плану, задачи сводились к единому «нормальному» виду и затем решались по общим правилам. Встречались задачи, сводящиеся к решению уравнений третьей степени и особых видов уравнений четвертой, пятой и шестой степеней.
Вавилонская система счисления является комбинацией шестидесятеричной и десятичной систем с применением позиционного принципа; в ней используются всего два разных символа: один обозначает единицу, второй - число 10; все числа записываются при помощи этих двух символов с учетом позиционного принципа. В самых древних текстах (около 1700 г. до н.э.) не встречается никакого символа для обозначения нуля; таким образом, численное значение, которое придавалось символу, зависело от условий задачи, и один и тот же символ мог обозначать 1, 60, 3600 или даже 1/60, 1/3600
Греки в течении одного-двух столетия сумели овладеть математическим наследием предшественников, но они не довольствовались усвоением знаний; греки создали абстрактную и дедуктивную математику. Они были, прежде всего, геометрами, имена которых и даже сочинения дошли до нас. Это Фалес Милетский, школа Пифагора, Гиппократ Хиоский, Демокрит, Евдокс, Аристотель, Евклид, Архимед, Аполоний.
Милетская школа, заложившая основы математики как доказательной науки - одна из первых древнегреческих математических школ. Она существовала в Ионии в конце V-IV вв. до н.э; основными деятелями ее являлись Фалес (ок.624-547 гг. до н.э.), Анаксимандр (ок. 610-546 гг. до н.э.) и Анаксимен (ок.585-525 гг.до н.э.).
Основоположником пифагорийской школы был Пифагор Самосский (580-500 до н.э.).
Главной заслугой пифагорейцев в области науки является существенное развитие математики, как по содержанию, так и по форме. По содержанию -- открытие новых математических фактов. По форме -- построение геометрии и арифметики как теоретических, доказательных наук, изучающих свойства отвлеченных понятий о числах и геометрических формах.
Дедуктивное построение геометрии явилось мощным стимулом её дальнейшего роста.
Пифагорейцы развили и обосновали планиметрию прямолинейных фигур: учение о параллельных линиях, треугольниках, четырехугольниках, правильных многоугольниках. Получила развитие элементарная теория окружности и круга.
Наличие у пифагорейцев учения о параллельных линиях говорит о том, что они владели методом доказательства от противного и впервые доказали теорему о сумме углов треугольника. Вершиной достижений пифагорейцев в планиметрии является доказательство теоремы Пифагора.
Числа у пифагорейцев выступают основополагающими универсальными объектами, к которым предполагалось свести не только математические построения, но и все многообразие действительности. Физические, этические, социальные и религиозные понятия получили математическую окраску. Науке о числах и других математических объектах отводится основополагающее место в системе мировоззрения, то есть фактически математика объявляется философией.
Как ни велики заслуги пифагорейцев в развитии содержания и систематизации геометрии и арифметики, однако все они не могут сравниться со сделанным ими же открытием несоизмеримых величин. Это открытие явилось поворотным пунктом в истории античной математики.
Элейская школа - это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина V в. до н.э.).
В силу тесной взаимосвязи общих философских представлений с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему ма-тематических знаний. Целый ряд важнейших математических построений, считавшихся до этого, несомненно, истинными, в свете зеноновских пост-роений выглядели как противоречивые.
Значительно сложнее было построить систему фундаментальных положений математики, в которой бы выявленные Зеноном противоречия не имели бы места. Эту задачу решил греческий математик Демокрит, разработав концепцию математического атомизма. Руководствуясь положениями математического атомизма, Демокрит проводит ряд конкретных математических исследований и достигает выдающихся результатов (например, теория математической перспективы и проекции). Выдающим достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародышевой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Платоном и получила логически развернутое положение у Аристотеля.
Посредством математических отношений Платон пытался охарактери-зовать некоторые явления общественной жизни. Платон существенно опирался на математику при разработке основных разделов своей философии: в концепции "познание - припоминание", учении о сущности материального бытия, об устройстве космоса, в трактовке социальных явлений и т.д. Математика сыграла значительную роль в конструктивном оформлении его философской системы.
Величайший философ древности Аристотель (384-322 гг. до н.э.) в математике, по - видимому не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков. Ко времени Аристотеля теоретическая математика достигла высокого уровня развития. Продолжая традицию философского анализа математического познания, Аристотель поставил вопрос о необходимости упорядочивания самого знания о способах усвоения науки, о целенаправленной разработке искусства ведения познавательной деятельности, включающего два основных раздела: «образованность» и «научное знание дела».
Среди известных сочинений Аристотеля нет специально посвященных изложению методологических проблем математики. Но по отдельным высказываниям, по использованию математического материала в качестве иллюстраций общих методологических положений можно составить представление о том, каков был его идеал построения системы математических знаний.
У Аристотеля отчетливо сформулированы логические принципы дедуктивного построения математической дисциплины. Чтобы что-то доказывать, делать логические выводы, нужно опираться на какие-то предшествующие положения, уже доказанные ранее. Поэтому для построения строгой математической теории необходимо перечислить некоторые предположения, на которые можно опираться при доказательстве.
Эти принципы особенно четкое воплощение получили в обширном творении Евклида (III в. до н.э.) «Начала», текст которого дошел и до нашего времени. На две тысячи лет «Начала» Евклида стали энциклопедией, место которого определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Величайшая заслуга Евклида состоит в том, что он подвёл итог построению геометрии и придал изложению совершенную форму.
Из арифметики постепенно вырастает теория чисел. Создается систематическое учение о величинах и измерении. Процесс формирования понятия действительного числа оказывается весьма длительным.
В течение 5-го, 4-го, 3-го тысячелетий до н.э. новые и более совершенные формы общества складывались на основе упрочившихся общин, существовавших на берегах великих рек Африки и Азии.
Восточная математика возникла как прикладная наука, имевшая целью облегчить календарные расчеты распределения урожая и сбора налогов. В начале главным делом были арифметические расчеты и измерения. Однако с течением времени из арифметики выросла алгебра, а из измерений возникли зачатки теоретической геометрии.
На Востоке возникла система, основанная на десятичной системе счисления со специальными знаками для каждой десятичной единицы более высокого разряда - системе, которая нам знакома, благодаря римскому исчислению, основанному на том же принципе. Именно на востоке определено значение р.
В течение последних столетий 2-го тысячелетия до н.э. в бассейне Средиземного моря и прилегающих к нему областях очень многое изменилось в политике. Итогом был расцвет греческого полиса - самоуправляющегося города - государства. Именно в этой атмосфере родилась современная математика.
Следующим был период Александрии. Одно из крупнейших произведений этого периода стало «Великое собрание» Птолемея. Там мы находим теорему о четырехугольниках, вписанном в окружность. В «Сферике» Менелая мы находим теорему о треугольнике в обобщенном для сферы виде. Но, тем не менее, Александрийская школа медленно умирала вместе с упадком античного общества.
Наиболее развитой частью римской империи всегда был восток. Земледелие запада было экстенсивным, никогда не имело в своей основе орошения и это содействовало астрономическим исследованиям. Мало подвижная цивилизация западной римской империи сохранялась в течение столетий.
В течение первых веков западного феодализма даже в монастырях не очень высоко ставят математику. Там она сводилась лишь к скромной арифметике церковного назначения.
Итальянские купцы посещали восток и знакомились с его цивилизацией. Они стремятся познакомиться с наукой и искусствами более древней цивилизации, чтобы использовать их в своей собственной новой системе. А в 12-13 столетиях мы видим уже рост банковского дела и зачатки капиталистической формы производства. Одним из ученых этого периода был Леонардо из Пизы (Фибоначчи). Он написал свою «Книгу Абака», заполненную алгебраическими и арифметическими сведениями, собранными во время путешествия. В книге «Практика геометрии» Леонардо рассказывает о том, что он открыл в области геометрии и тригонометрии. Интерес к математике стал распространяться на северные города. Поначалу это был практический интерес, и в течение нескольких столетий арифметику и алгебру вне университетов преподавали мастера, которые обычно не знали классиков, но зато обучали бухгалтерии и навигации.
Математика развивалась главным образом в растущих торговых городах. Горожан интересовал счет, арифметика, вычисления. Типичен для этого периода Иоганн Мюллер, ведущая математическая фигура 15-го столетия. Он перевел Птолемея, Герона, Архимеда. Он положил много труда на вычисление тригонометрических таблиц, составил таблицу синусов с интервалом в одну минуту. Значения синусов рассматривались как отрезки, представлявшие полухорды соответствующих углов в круге, поэтому они зависели от длины радиуса.
Развитие анализа получило мощный импульс, когда была написана «Геометрия» Декарта. Она включила в алгебру всю область классической геометрии. Декарт создал аналитическую геометрию. Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интереса к задачам, связанным с вероятностями, происходило прежде всего под влиянием страхового дела.
Период элементарной математики заканчивается, когда центр тяжести математических интересов переносится в область математики переменных величин. Еще в математике Древнего мира на материале изучения тригонометрических функций и при составлении их таблиц формируются представления о функциональной зависимости. Таким образом, весь период до 17 в. остается периодом элементарной математики.
В целом же математика прошла гигантский путь в этот период от зарождения счета на пальцах до сложнейших теорем.

2. ПЕРИОД СОЗДАНИЯ МАТЕМАТИКИ ПЕРЕМЕННЫХ ВЕЛИЧИН. СОЗДАНИЕ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ, ДИФФЕРЕНЦИАЛЬНОГО И ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ

В XVII в. начинается новый период истории математики - период математики переменных величин. Его возникновение связано, прежде всего, с успехами астрономии и механики.
Кеплер в 1609-1619 гг. открыл и математически сформулировал законы движения планет. Галилей к 1638 г. создал механику свободного движения тел, основал теорию упругости, применил математические методы для изучения движения, для отыскания закономерностей между путем движения, его скоростью и ускорением. Ньютон к 1686 г. сформулировал закон всемирного тяготения.
Первым решительным шагом в создании математики переменных величин было появление книги Декарта «Геометрия». Основными заслугами Декарта перед математикой являются введение им переменной величины и создание аналитической геометрии. Прежде всего, его интересовала геометрия движения, и, применив к исследованию объектов алгебраические методы, он стал создателем аналитической геометрии.
Аналитическая геометрия начиналась с введения системы координат. В честь создателя прямоугольная система координат, состоящая из двух пересекающихся под прямым углом осей, введенных на них масштабов измерения и начала отсчета - точки пересечения этих осей - называется системой координат на плоскости. В совокупности с третьей осью она является прямоугольной декартовой системой координат в пространстве.
К 60-м годам XVII в. были разработаны многочисленные метолы для вычисления площадей, ограниченных различными кривыми линиями. Нужен был только один толчок, чтобы из разрозненных приемов создать единое интегральное исчисление.
Дифференциальные методы решали основную задачу: зная кривую линию, найти ее касательные. Многие задачи практики приводили к постановке обратной задачи. В процессе решения задачи выяснялось, что к ней применимы интеграционные методы. Так была установлена глубокая связь между дифференциальными и интегральными методами, что создало основу для единого исчисления. Наиболее ранней формой дифференциального и интегрального исчисления является теория флюксий, построенная Ньютоном.
Математики XVIII в. работали одновременно в области естествознания и техники. Лагранж создал основы аналитической механики. Его труд показал, как много результатов можно получить в механике благодаря мощным методам математического анализа. Монументальное произведение Лапласа «Небесная механика» подвело итоги всех предшествовавших работ в этой области.
XVIII в. дал математике мощный аппарат - анализ бесконечно малых. В этот период Эйлер ввел в математику символ f (x) для функции и показал, что функциональная зависимость является основным объектом изучения математического анализа. Разраба и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.