На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Лекции Уравнения параболического типа. Разностные схемы для уравнения теплопроводности, задача Коши. Явная и неявная разностные схемы. Применение двухслойных разностных шаблонов. Устойчивость двухслойных разностных схем. Решение задач методом прогонки.

Информация:

Тип работы: Лекции. Предмет: Математика. Добавлен: 28.06.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Разностные схемы для уравнений параболического типа

1. Решение задачи Коши

Рассмотрим задачу Коши для уравнения теплопроводности

, , , (3.5)

с условием на прямой t=0

, . (3.6)

Требуется найти функцию , которая при  и  удовлетворяла бы уравнению (3.5), а при выполняла бы условие (3.6).

Будем считать, что задача (3.5), (3.6) имеет в верхней полуплоскости единственное решение , непрерывное вместе со своими производными

i=1, 2 и , k=1, 2, 3, 4.

Запишем задачу (3.5), (3.6) в виде . Для этого достаточно положить

Будем далее считать, что t изменяется в пределах . В рассматриваемом случае

,

Г ? объединение прямых t=0 и t=T.

Выберем прямоугольную сетку и заменим область  сеточной областью . К области  отнесем совокупность узлов , где

 

, , ,

, , , .

Заменим задачу  разностной схемой вида . Обозначим через  точное значение решения задачи  в узле , а через  - соответствующее приближенное решение. Имеем

 

Для замены выражений и воспользуемся формулами численного дифференцирования. Имеем:

, (3.7)

, (3.8)

, (3.9)

(3.10)

Назовем некоторую совокупность узлов, привлекаемых для замены задачи  в узле , разностной схемой  , шаблоном. Наиболее употребительные шаблоны изображены на рис. 3:

 

Рис. 3. Явный и неявный шаблоны

Рассмотрим явный двухслойный шаблон. Для него

(3.11)

Здесь мы воспользовались формулами (3.7) и (3.10) и обозначили

.

Введем обозначение

(3.12)

Теперь на основании формул (3.11), (3.12) можно записать разностную схему для задачи :

, (3.13)

где разностный оператор определяется по правилу

Аналогично, если использовать неявный двухслойный шаблон, можно получить такую разностную схему:

, (3.14)

где

На основании формул (3.11) и (3.13) можно записать

,

где

Аналогично, используя (3.11), (3.10), (3.14), получим

,

.

Выясним порядок аппроксимации разностных схем (3.13) и (3.14). В качестве возьмем линейное множество всех пар ограниченных функций

Норму в  определим правилом

Пусть , где r и s - некоторые положительные числа.

Предположим, что для  и верны оценки

, .

Тогда легко получить

, (3.15)

. (3.16)

Для параболических уравнений, как мы увидим далее, в случае схемы (3.13) можно взять S=2, а в случае схемы (3.14) можно взять S=1.

Из формул (3.15), (3.16) следует, что разностные схемы (3.13), (3.14) аппроксимируют задачу  с погрешностью порядка S относительно h.

Разностная схема (3.13) позволяет по значениям решения на нулевом слое, то есть по значениям  вычислить значения на первом слое  . Для этого достаточно в (3.13) положить n = 0 и произвести вычисления, носящие рекурсионный характер. Потом по значениям  можно аналогично при n = 1 вычислить значения  и т.д. В силу этого разностную схему (3.13) называют явной.

Разностная схема (3.14) такими свойствами не обладает. Действительно, если мы в (3.14) положим n = 0, то в левой части полученной формулы будет линейная комбинация и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.