На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Теория вероятности математическая наука, изучающая закономерности в случайных явлениях. Метод наибольшего правдоподобия. Доверительные оценки. Точечные оценки и критерий согласия. Теорема Чебышева. Распределение Пуассона. Доверительный интервал.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 16.01.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


4
Министерство образования и науки Украины
Харьковский национальный университет радиоэлектроники
Факультет ПММ
Кафедра ПМ
КУРСОВАЯ РАБОТА
Тема: Распределение Пуассона. Аксиомы простейшего потока событий.
Дисциплина: Теория вероятностей и математическая статистика
Выполнил: Проверил:
ст. группы ******** проф. **********
*****************
Харьков 2007
РЕФЕРАТ
В данном курсовом проекте представлено описание понятий корреляционного момента и его свойств, коэффициента корреляции, случайных событий и их основных числовых характеристик, применения на практике корреляции, а также приведено решение практических задач.
Пояснительная записка состоит из вступления, основной части, выводов, списка литературы.
Записка 28с.
Ключевые слова и выражения:
СЛУЧАЙНАЯ ВЕЛИЧИНА, МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ, ДИСПЕРСИЯ, НАЧАЛЬНЫЙ МОМЕНТ, ЦЕНТРАЛЬНЫЙ МОМЕНТ, КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ, КОРРЕЛЯЦИОННЫЙ МОМЕНТ, ЗАКОН РАСПРЕДЕЛЕНИЯ, СРЕДНЕЕ КВАДРАТИЧНОЕ ОТКЛОНЕНИЕ, ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ, ЗАВИСИМОСТЬ.
СОДЕРЖАНИЕ

Введение………………………………………………………………………..….4

1 Теоретическая часть……….……………………………………………………5

1.1 Доверительные оценки…………………………………………..……….….5

1.2 Метод наибольшего правдоподобия………………………………….…...10

1.3 Точечные оценки…………………………………………………………..13

1.4 Критерий согласия…………………………………………………….……18

1.5 Теорема Чебышева…………………………………………...……….……19

1.6 Понятие доверительного интервала………………...……………….….…23

1.7 Сравнение средних………………………………………………………....25

1.8 Метод минимума X2 ……………………………………………………..…26

1.9 Распределение Пуассона. Аксиомы простейшего потока событий…..…28

2 Практическая часть……………………………………………………………30

Выводы…………………………………………………………………………...37

Список литературы……………………………………………………………...38

ВВЕДЕНИЕ

Теория вероятности - математическая наука, изучающая закономерности в случайных явлениях. При научном исследовании физических и технических задач, часто приходится встречаться с явлениями особого типа, которые принято называть случайными. Случайное явление - это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает несколько по-иному.

Очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной мере элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали.

Случайности неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления его упрощенную схему, т.е. модель, и предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом из бесчисленного множества факторов, влияющих на данное явление, выделяют самые главные, решающие. Влиянием остальных, второстепенных факторов просто пренебрегают. Изучая закономерности в рамках некоторой теории, основные факторы, влияющие на то или иное явление, входят в понятия или определения, которыми оперирует рассматриваемая теория.

Как и всякая наука, развивающая общую теорию какого-либо круга явлений, теория вероятностей также содержит ряд основных понятий, на которых она базируется. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие - это значит свести его к другим, более известным. Этот процесс должен быть конечным и заканчиваться на первичных понятиях, которые только объясняются.

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Доверительные оценки

Выборочная оценка, являясь точечной, дает оценочные значения соответствующего параметра из данной выборки, но ничего не дает для точности и достоверности оценки. Такие данные поставляют доверительные оценки. Пусть случайная выборка из генеральной совокупности со случайной величиной , распределение которой зависит от параметра . Пусть - такие функции выборок, что при произвольном выполняется равенство

. (1.1.1)

Тогда случайный интервал называется доверительной оценкой параметра с мерой надежности (с уровнем значимости ).
Если имеется реализация выборки , то реализация доверительной оценки дает доверительный интервал и в большом ряду выборок истинное значение лежит примерно в случаев внутри вычисленных доверительных границ и . Равенство (1.1.1) можно интерпретировать и так: случайный интервал “покрывает” истинный параметр с доверительной вероятностью .

В математической статистике часто используют понятие квантилей, процентных точек (односторонних критических границ и двухсторонних критических границ). Квантилью уровня p или p-квантилью случайной величины с функцией распределения называется решение уравнения .
Односторонней критической границей, отвечающей уровню значимости (процентной точкой уровня ), непрерывной случайной величины с функцией распределения называется значение случайной величины , для которой , или . Нижней и верхней критическими границами, отвечающими уровню значимости непрерывной случайной величины с функцией распределения называются значения случайной величины и , для которых ; ;

.

Для симметричных случайных величин, у которых плотности
распределения симметричны относительно некоторой точки, нижние и верхние критические границы удовлетворяют условию , что дает возможность приводить таблицы лишь для процентных точек или квантилей, больших . Так, для стандартной нормальной случайной величины с уровнем значимости .

Квантиль, односторонние и двухсторонние критические границы изображены на рис.1.

Рис.1. р-квантиль и критические точки для закона распределения .

1.1.1 Доверительная оценка при неизвестной вероятности по большим выборкам

Частота является точечной оценкой , она асимптотически нормально распределена с и .

Если ,то . Зададим . Величина такая, что может быть найдена из уравнения при помощи таблиц для функций Лапласа. Эти же рассуждения применим к . По заданному можно найти так, чтобы . Из неравенства следует, что , откуда можно вычислить оба значения и , которые представляют доверительные оценки для . Если выбрано достаточно малым, то случайный интервал “покрывает” почти наверное.

1.1.2 Доверительные оценки для параметров нормального закона

1.1.2.1 Доверительная оценка при известном

,, тогда .

Соответственно,

.

Для стандартной нормальной случайной величины с уровнем значимости нижняя и верхняя критические границы соответственно равны и .

Имеем

или

.

.

Таким образом, - доверительная оценка для параметра a с мерой надежности .

1.1.2.2 Доверительная оценка при неизвестном

Оценка основана на том факте, что при высказанных предположениях величина удовлетворяет t- распределению с n-1 степенями свободы.

Определяя одностороннюю критическую точку из условия ,получим доверительную оценку для а в виде

.

Для конкретной выборки объема n доверительная оценки для а становится ее доверительным интервалом.

1.1.2.3 Доверительная оценка при неизвестном

Отправной точкой является тот факт, что при заданных предпосылках величина удовлетворяет - распределению с n-1 степенями свободы. По заданному уровню значимости и степенями свободы находим критические точки и распределения такие, что

,

, или .

Таким образом , есть доверительная оценка с мерой надежности .

1.2 Метод наибольшего правдоподобия

Пусть дана выборка объема n из генеральной совокупности с непрерывно распределенной случайной величиной X. Пусть плотность вероятности X содержит неизвестный параметр, который следует оценить по выборке, и имеет вид .

Функцией правдоподобия называют функцию параметра , определяемую соотношением

. (1.2.1)

Рассмотрим случай дискретной случайной величины X с возможными значениями и вероятностями . Обозначим через наибольшее из возможных значений, которое встречается в выборке, а через --- абсолютные частоты, с которыми появляются значения в выборке . В этом случае функцией правдоподобия называют функцию параметра , определяемую соотношением

. (1.2.2)

Метод наибольшего правдоподобия состоит в том, что в качестве оценки параметра берется значение, при котором функция правдоподобия достигает своего максимума.

Параметр находят, решая относительно уравнение

. (1.2.3)

Часто вместо (1.2.3) используют уравнение

, (1.2.4)

Если плотность или вероятности зависят от параметров, то наиболее правдоподобную оценку системы параметров получают решением системы уравнений

(1.2.5)

или

. (1.2.6)

Наиболее правдоподобные оценки имеют некоторые замечательные свойства. При достаточно общих условиях они являются состоятельными и асимптотически нормально распределенными (однако не всегда несмещенными), имеют среди всех асимптотически нормально распределенных оценок наибольшую эффективность. Справедливо следующее положение: если вообще имеется эффективная оценка, то она получается методом наибольшего правдоподобия.

Пример 1.2.1 Оценить вероятность некоторого события . Пусть

Решение. ; . Пусть в независимых наблюдениях событие произошло раз, т.е. . Таким образом, имеем , . Отсюда следует, что . Следовательно, есть наиболее правдоподобная оценка параметра . Случайная величина k биномиально распределена, ; Следовательно, -- несмещенная оценка вероятности, асимптотически состоятельная и асимптотически нормальная.

Пример 1.2.2. Пусть случайная величина распределена по закону Пуассона с неизвестным параметром . Проведем выборку и получим значения ( - целые числа). Пусть - набольшее из наблюдаемых в выборке чисел, - абсолютные частоты, с которыми числа появляются в выборке ; . Тогда согласно формуле (3.2) . Из соотношения получаем , откуда .

Величина есть, таким образом, правдоподобная оценка для и вместе с тем состоятельная, асимптотически нормально распределенная.

Пример 1.2.3. Пусть случайная величина распределена нормально с параметрами и . Их следует оценить исходя их выборки объема .

Решение. Функция правдоподобия

,

следовательно

.

Согласно (2.5), получаем следующие уравнения для определения и : ; , откуда и . Следовательно, есть наиболее правдоподобная оценка параметров . Мы уже знаем, что не является несмещенной оценкой, а только асимптотически не смещена.

1.3 Точечные оценки

Одной из задач математической статистики явля-ется оценка неизвестных параметров выбранной параметриче-ской модели.

Очень часто в приложениях рассматривают параметриче-скую модель. В этом случае предполагают, что закон рас-пределения генеральной совокупности принадлежит множеству

, где вид функции распределения задан, а век-тор параметровнеизвестен. Требуется найти оценку дляили некоторой функции от него (например, ма-тематического ожидания, дисперсии) по случайной выборке из генеральной совокупности X.

Например, предположим, что масса X детали имеет нор-мальный закон распределения, но его параметры неизвестны. Нужно найти приближенное значение параметров по результатам наблюдений х, …, хп, полученным в экспери-менте (по реализации случайной выборки).

Как уже отмечалось , в математической статисти-ке существуют два вида оценок: точечные и интервальные. В этой главе будут рассмотрены точечные оценки, а интерваль-ным оценкам посвящена следующая глава.

1.3.1. Состоятельные, несмещенные и эффективные оценки

Пусть-- случайная выборка из генеральной совокупности X, функция распределениякоторой известна, а-- неизвестный параметр, т.е. рассматривается параметрическая модель(для простоты изложения будем считать пока, что-- скаляр).

Требуется построить статистику, которую можно было бы принять в качестве точечной оценки параметра.

Интуитивно ясно, что в качестве оценки параметрамож-но использовать различные статистики. Например, в качестве точечной оценки дляможно предложить такие статистики:

Какую же из этих статистик предпочесть? В общем случае нужно дать ответ на вопрос: какими свойствами должна обла-дать статистика, чтобы она была в неко-тором смысле наилучшей оценкой параметра в? Рассмотрению требований к оценкам и методам их нахождения посвящена на-стоящая глава.

Заметим, что в дальнейшем, как правило, будем говорить об оценке параметрапараметрической модели, хотя все ска-занное можно перенести и на функцию от в.

Определение 1.3.1.1 Статистикуназывают состоятельной оценкой параметра, если с ростом объема выборки п она сходится по вероятности к оцениваемому пара-метру , т.е.

Иными словами, для состоятельной оценкиотклонение ее отна величину е и более становится маловероятным при большом объеме выборки. Это свойство оценки является очень важным, ибо несостоятельная оценка практически беспо-лезна. Однако следует отметить, что на практике приходится оценивать неизвестные параметры и при малых объемах вы-борки.

Естественным является то требование, при выполнении ко-торого оценка не дает систематической погрешности в сторону завышения (или занижения) истинного значения параметра.

Определение 1.3.1.2. Статистикуназывают несмещенной оценкой параметра, если ее математическое ожи-дание совпадает с, т.е.для любого фиксирован-`испер.

Если оценка является смещенной (т.е. последнее равенство не имеет места), то величина смещения Как мы увидим далее, смещение оценки часто можно устра-нить, введя соответствующую поправку.

Говорят также, что оценкаявляется асимптотически несмещенной, если приона сходится по вероятности к своему математическому ожиданию, т.е. для любого

Предположим, что имеются две несмещенные оценки
4

и для параметра. Если дисперсииудовлетворяют условию

(1.3.1)

для любого фиксированного пи, то следует предпочесть оценку, поскольку разброс статистики относительно параметраменьше, чем разброс статистики

Определение 1.3.1.3. Если в некотором классе несмещенных оценок параметра, имеющих конечную дисперсию, существу-ет такая оценка, что неравенство (2.1) выполняется для всех оценокиз этого класса, то говорят, что оценка является эффективной в данном классе оценок.

оценивать неизвестные параметры и при малых объемах вы-борки.

Естественным является то требование, при выполнении ко-торого оценка не дает систематической погрешности в сторону завышения (или занижения) истинного значения параметра.

Определение 1.3.1.4. Статистикуназывают несмещенной оценкой параметра, если ее математическое ожи-дание совпадает с, т.е.для любого фиксирован-н`испер

Если оценка является смещенной (т.е. последнее равенство не имеет места), то величина смещения Как мы увидим далее, смещение оценки часто можно устра-нить, введя соответствующую поправку.

Говорят также, что оценкаявляется асимптотически несмещенной, если приона сходится по вероятности к своему математическому ожиданию, т.е. для любого

Предположим, что имеются две несмещенные оценки
4

и для параметра. Если ди`исперсии

удовлетворяют условию

(1.3.2)

для любого фиксированного пи, то следует предпочесть оценку, поскольку разброс статистикиотносительно параметраменьше, чем разброс статистики

Определение. Если в некотором классе несмещенных оценок параметра, имеющих конечную дисперсию, существу-ет такая оценка, что неравенство (3.2) выполняется для всех оценокиз этого класса, то говорят, что оценка является эффективной в данном классе оценок.

Иными словами, дисперсия эффективной оценки параметра в некотором классе является минимальной среди дисперсий всех оценок из рассматриваемого класса несмещенных оценок.

Замечание 1.3.1.1. Эффективную оценку в классе всех несме-щенных оценок будем называть эффективной оценкой, не добавляя слов „в классе несмещенных оценок".

Замечание 1.3.1.2. В литературе по математической ста-тистике при рассмотрении параметрических моделей вместо термина «эффективная оценка» классе всех несмещенных оце-нок используют и другие: «несмещенная оценка с минимальной дисперсией», «оптимальная оценка». Теорема 1.3.1. Оценка

(выборочное среднее) математического ожидания

генеральной совокупности X с конечной дисперсией является несмещенной, состоятельной и эффективной в классе всех ли-нейных оценок, т.е. оценок вида

где , для произвольнойпараметрической модели.

Напомним, что элементы случайной выборки

являются независимыми случайными величинами и распре-деленными так же, как и сама генеральная совокупность X. Следовательно,

1.4 Критерии согласия

Пусть (X1,..,Xn) - выборка с неизвестным законом распределения F(X). Рассмотрим гипотезы Н0: F(x)=F0(x) при конкурирующей Н1: F(x)F0(x). F0(x)- некоторая заданная функция распределения.

Задача проверки гипотез относительно законов распределения называется задачей проверки согласия, а критерий для этой задачи - -ритерием согласия.

Рассмотрим критерий согласия 2, или критерий Пирсона.

Разобьем ось х на т интервалов Если истинная функция распределения F(x) совпадает с F0(x), то при больших n

Рассмотрим случайную величину (ni - -лучайное)

при она стремится к 2 - -аспределению случайной величины с т-е-1 степенями свободы (е- число статистических параметров).

Решающее правило для уровня значимости :

При построении 2n должно выполняться условие ni10, в противном случае объединяют интервалы.

В случае применения гипотезы Н0 говорят, что различие между F(x) и F0(x) является случайным с доверительной вероятностью 1- и обусловлено конечностью выборки.

1.5 Теорема Чебышева

Неравенство Чебышева. Для любой случайной величины Х, имеющей математическое ожидание МХ и дисперсию DX, справедливо неравенство

где -- любое положительное число.

Доказательство. Доказательство проведём сначала для непрерывной случайной величины Х с плотностью распределения f(x).

Обозначим через А событие, состоящее в том, что случайная точка Х попадает за пределы участка (MX-; MX+), то есть

А: {X-MX}

MX - MX MX+

Вероятность п и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.