На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Допустимые кольца и решетки. Допустимые полутела. О единственности расширения. Теория полуколец - раздел современной алгебры, находящий применения в компьютерной алгебре, идемпотентном анализе, теории оптимального управления.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 08.08.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


3
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Расширение кольца с помощью полутела
Выполнил:
студент V курса математического факультета
Лукин Михаил Александрович
_____________________
Научный руководитель:
д. ф.-м. н., профессор, зав. кафедрой алгебры и геометрии
Вечтомов Евгений Михайлович
_____________________
Рецензент:
к. ф.-м. н., доцент, доцент кафедры алгебры и геометрии
Чермных Василий Владимирович
_____________________

Допущен к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой Е. М. Вечтомов
«___»___________2005 г. Декан факультета В. И. Варанкина
Киров - 2005 Содержание
Введение 3
§1. Допустимые кольца и решетки 6
§2. Допустимые полутела 10
§3. О единственности расширения 12
Заключение 14
Библиографический список 15
Введение
Теория полуколец является активно развивающимся разделом современной алгебры, находящим применения в компьютерной алгебре, идемпотентном анализе, теории оптимального управления.
Для получения новых конструкций полуколец может оказаться полезным понятие двойного расширения полуколец (или 0-1 расширения).
В работе исследуется следующий вопрос. Для каких кольца R, полутела U и ограниченной дистрибутивной решетки L существует 0-1-расширение кольца R и полутела U с помощью решетки L?
Полукольцом называется такая алгебраическая структура S; +, , 0, что S; +, 0 - коммутативный моноид с нулем 0, S, - полугруппа и в S выполняются тождества a(b+c)=ab+ac, (a+b)c=ac+bc и a0=0a=0. Неодноэлементное полукольцо с делением, не являющееся кольцом, называется полутелом (с нулем). Если из полутела S исключить 0, то получим структуру S; +, , которую будем называть полутелом без нуля, или просто полутелом. Полукольцо с квазитождеством a+b=0 a=0 назовем антикольцом. Полукольцо с тождеством a+a=a называется идемпотентным. А полукольцо с квазитождеством a+b=a+c b=c называется сократимым.
Полукольцо S назовем 0-расширением полукольца K с помощью полукольца T, если на S существует такая конгруэнция , что K[0] - изоморфно нулевому ядру - и S/T. Аналогично, полукольцо S с единицей 1 называется 1-расширением полукольца K, возможно без нуля, с помощью полукольца T, если на S существует конгруэнция , для которой K[1] - изоморфно единичному ядру - и S/T. В отличие от колец данные расширения позволяют шире представлять сами полукольца, скажем, изучить симбиоз колец и полутел, или колец и антиколец (см. [1]).
Для произвольного полукольца S обозначим через R(S) множество всех аддитивно обратимых элементов в S, а через U(S) - множество всех обратимых элементов в S в случае, когда S обладает 1. Очевидно, что R(S) является кольцом и строгим идеалом полукольца S (т.е. a+bR(S) abR(S)).
Пусть S/R(S) - фактор-полукольцо полукольца S по конгруэнции Берна, соответствующей идеалу R(S): s конгруэнтно t s+a=t+b для некоторых a, bR(S). Положительное регулярное полукольцо, все идемпотенты которого центральны, называются arp-полукольцом [2]. При этом положительность полукольца S с 1 означает, что все элементы вида a+1, aS, обратимы, а его регулярность означает разрешимость в S каждого уравнения axa=a.
Справедливы следующие утверждения.
1. Любое полукольцо S является 0-расширением кольца, изоморфного R(S), с помощью положительно упорядоченного полукольца [1]
2. Полукольцо S с 1 изоморфно прямому произведению кольца и антикольца тогда и только тогда, когда его идеал R(S) имеет единичный элемент, коммутирующий с каждым элементом из S [1].
3. Полукольцо S служит 0-расширением кольца с помощью полутела тогда и только тогда, когда идеал R(S) полульца S простой (т.е. abR(S) влечет aR(S) или bR(S)).
4. Для полукольца S с 1 фактор-полукольцо S/R(S) является полутелом с нулем тогда и только, когда R(S) есть максимальный односторонний идеал в S.
В качестве следствия утверждений 2 и 4 очевидным образом формулируется критерий разложимости полукольца с 1 в прямое произведение кольца и полутела с нулем. Отметим также, что подпрямые произведения кольца и ограниченной дистрибутивной решетки абстрактно охарактеризованы в [3].
5. Для существования 1-расширения полукольца K, возможно не имеющего нуля, с помощью полукольца T необходимо и достаточно, чтобы K имело 1, а T было идемпотентным полукольцом с 1.
6. Любое arp-полукольцо S является 1-расширением полутела U(S) с помощью ограниченной дистрибутивной решетки S/, где - конгруэнция на S, такая, что ab означает aU(S)=bU(S). Для коммутативных полуколец верно и обратное утверждение. См. [2].
7. Всякое полутело является 1-расширением сократимого полутела с помощью идемпотентного полутела [4].
Полукольцо S с 1 назовем 0-1-расширением полукольца K и полукольца без нуля L с помощью полукольца T, если на S существует такая конгруэнция , что [0]сK, [1]L и S/T.
Пусть для кольца R, полутела U и ограниченной дистрибутивной решетки L существует 0-1-расширение кольца R и полутела U с помощью решетки L. Соответствующую тройку <R ,P ,L> будем называть допустимой.
§1. Допустимые кольца и решётки
Речь в главе пойдёт о решётке и кольце, состоящих в допустимой тройке.
Обозначим через D двухэлементную цепь.
Пусть имеется полукольцо S с конгруэнцией , для которой [0]R, [1]P, F/D. Такое полукольцо S назовем дизъюнктным объединением кольца R и полутела P, и обозначим PR. Ясно, что pP,rR,prR,p+rP.
С другой стороны, если любой элемент полукольца S с 1 либо обратим, либо имеет противоположный элемент, то S будет дизъюнктным объединением кольца R(S) и полутела U(S). При этом разбиение {R(S), U(S)} индуцирует искомую конгруэнцию на S.
Предложение. В UR справедливы следующие утверждения а) аддитивная группа R делимая абелева группа. б) результат умножения определён единственным образом.

Доказательство. а) Пусть , тогда , ч.т.д.
б) Пусть мультипликативная операция задана. Если , то . Умножив равенство на справа, получим , значит . Рассмотрим результат умножения , пусть . Тогда , поэтому есть элемент, складывая который раз получим . Из ранее доказанного следует, что такой элемент единственен, что завершает доказательство. есть решение уравнения в кольце .
Теорема 1. Для произвольного кольца R эквивалентны следующие условия:
1) существует допустимая тройка R, U, L, где L - любая дистрибутивная решетка с 10;
2) существует полукольцо, являющееся дизъюнктным объединением кольца R и полутела U;
3) R - радикальное по Джекобсону кольцо, аддитивная группа которого есть делимая группа без кручения.
Доказательство.
12. Для данной тройки рассмотрим подходящие полукольцо S и конгруэнцию . Поскольку D - подрешетка дистрибутивной решетки L с 0 и 1, в качестве дизъюнктного объединения можно взять подполукольцо [1][0] в S.
21. Любая дистрибутивная решетка L обладает простым идеалом I, более того L\I - дуальный идеал.
Поэтому в качестве полукольца S можно взять множество пар (i,r),iI,rR(l,p),lL/I,pP с покоординатным сложением и умножением. Ввиду простоты I операции заданы корректно, аксиомы полукольца выполняются, поскольку они выполняются для левой координаты, как аксиомы решётки и для правой координаты, что следует из существования F, [0]R, [1]P, F/L2. Если в качестве конгруэнции выбрать отношение равенства первых координат, то [0]R, [1]P, S/L2, что завершает доказательство.
Лемма. Пусть в кольце R r r tR,(r+rr+r)t=0,(r+rr+r)t=0, тогда r r ,r+rr+r=0r+rr+r=0.
Доказательство. Пусть выполнено условие леммы, тогда, положим r=-r-rr. Имеем
r+rr+r = r+(- r - rr)r - r - rr = (r+rr+r)(-r)=0
r+rr+r = r+r (- r - rr) - r - rr = (r+rr+r)(-r)=0.
Кольцо R называется радикальным по Джекобсону, если оно совпадает со своим радикалом Джекобсона (см., например, [5]). Это означает, что операция «круговой композиции» rs = r+s+rs в R является групповой, с нейтральным элементом 0. Другими словами, в кольце R для любого элемента r существует единственный элемент s, такой, что r+s+rs=0.
2)3). P содержит Q+, иначе 1+1=1, умножив равенство на ненулевой элемент кольца r, имеем r+r=rr=0 - противоречие. Таким образом, R - полумодуль над Q+ и, значит, модуль над Q. Поэтому <R,+> - делимая абелева группа без кручения (подробно см. также предложение).
Множество T= Q++R является подполутелом в U, поскольку
q1+r1+q2+r2 = (q1+q2)+(r1+r2);
(q1+r1)(q2+r2) = (q1q2+q1r2+r1q2+r1r2) = q1q2+(q1r2+r1q2+r1r2);
t=q+r1=qt -1+rt -1t -1=q -1- q -1r t -1 Q+ + R.
Следовательно, для любого элемента 1+r,rR найдётся, 1+r,rR что (1+r)(1+r) = (1+r)(1+r) = 1. Из дистрибутивности следует, что 1+r+rr+r = 1+r+rr+r = 1. Умножая последнее равенство на любое tR, имеем (r+rr+r)t=0(r+rr+r)t=0, значит, в виду леммы, R радикально по Джекобсону.
3)2). Поскольку R радикально по Джекобсону, алгебра Q+R с операциями
(q1,r1)+(q2,r2) = (q1+q2)+(r1+r2), (q1,r1)(q2,r2) = (q1q2,q1r2+r1q2+r1r2)
является полутелом с единичным элементом (1,0). А множество S(Q+{0})R с теми же операциями совпадает с (Q+R)({0}R) = (Q+R)R.
Примеры. 1. Любое ниль-кольцо радикально по Джекобсону. В частности таково кольцо с нулевым умножением.
Ещё одним частным случаем является нильпотентное кольцо R, порождённое одним элементом .
Пусть - образующий. Поскольку в качестве элементов R выступают p1 + p22 + … + pn-1n-1, piQ, n - наименьшая нулевая и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.