На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 04.09.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


34
Содержание
Введение ………………………………………………………………………..…2
1. Основные понятия …………………………………………………………......3
1.1. Функциональные и стохастические связи ……………………………….....8
1.2. Статистические методы моделирования связи …………………………...12
1.3. Статистическое моделирование связи методом корреляционного и регрессионного анализа ………………………………………………………...13
2. Проверка адекватности регрессионной модели ……………………………18
3. Практическая часть …………………………………………………………..25
3.1. Оценка значимости коэффициентов регрессии …………………………..27
3.2. Проверка адекватности модели по критерию Фишера …………………..29
3.3. Проверка адекватности модели по коэффициенту детерминации или множественной корреляции ……………………………………………………30
Заключение ………………………………………………………………………34
Использованная литература ……………………………………………………35
Введение
В экономических исследованиях часто решают задачу выявления факторов, определяющих уровень и динамику экономического процесса. Такая задача чаще всего решается методами корреляционного, регрессионного, факторного и компонентного анализа. ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).
Все многообразие факторов, которые воздействуют на изучаемый процесс, можно разделить на две группы: главные (определяющие уровень изучаемого процесса) и второстепенные. Последние часто имеют случайный характер, определяя специфические и индивидуальные особенности каждого объекта исследования. ?????? ??? ????????? ??????????? ????? ???????????, ???? ??????????????? ?????????? ? ?????????? ????????? ????????? ??? ????????????????? ??????????, ?? ?????? ????????????? ????????? ???????? ?? ?? ?????????? ???????? ?????? ? ???, ????? ???????? ? ??????? ??????? ?????? ?? ???????. ?????????????? ??????????. ???? ????????????. ???????????? ? ????????? ????????? ???????? ??? ?????????? ????????? ????????? ???? ?????????? ? ????????. ? ?????? ??????????? ????? ??????????? ? ?????? ????? ????????? ????? ??????????? ???????? ????. ?????????? ? ?????????? ???????????? ?????????. ????? ????????? ??????????? ????????????, ?????????? ??? ?????????? ????????? ?????????, ? ??????? ? ???????? ????????? ?????????? ????? ?????? ??????????. ?? ????????? ?????, ??? ???????? ???????????? ??? ????????????, ??? ??????? ?????????? ??????? ? ?????????? ???????????. ??? ?????????? ????? ????????????? ?????????. ? ?????? ?????? ?????????? ??????????? ?? ???????????? ?????????? - ??????????? ???????? ??? ??????? ????????????? ???????????? ???????? ???????? ??????????, ??????? ?? ?????????? ????????, ??? ??????????. ?????????? ????????? ?????????? ? ?????????. ??? ???????????????? ??????? ?????????? ????????????? ?????????????, ?????????? ?? ?????????? ????????? ? ?????????? ??????????.
Взаимодействие главных и второстепенных факторов и определяет колеблемость исследуемого процесса. В этом взаимодействии синтезируется как необходимое, типическое, определяющее закономерность изучаемого явления, так и случайное, характеризующее отклонение от этой закономерности. Случайные отклонения неизбежно сопутствуют любому закономерному явлению. ?? ??? ?????? ????????? ?????????? ???????? ????????. ?????? ????????????? ????????? ?? ?????????? ???????????? ??????????? ???????, ?? ????????, ???, ??? ??????? ????? ??????????, ????????????? ?????? ?????????????? ?????????. ??? ????????? ?????? ????????????? ????????? ?????????????? ????? ????????? ?????? ?????????. ? ?????? ??????????? ??????????, ??????????? ?????? ??? ??????. ?????????? ?? ???????? ????????????? ???????????? ??? ???????? ?????????????? ??????? ???? ????????????? ????????? ?? ???? ???????? ?????? ????????????? ???????? ???????? ????????? ?????????? ???????????? ????????. ??? ????? ????????? ?? ??? ????? ????????? ???????. ?????????? ? ???????? ???????? ????????? ???? ????????????? ????????????? ????? ????????????? ?????? ?, ???????????, ?? ???? ?????????? ?????????, ???????? ?? ???????????? ???????????? ????????. ???????????? ???????????? ? ????????????? ??????????. ??? ????????? ???????? ?????????, ????????? ?? ????????? ????????? ??????????, ??????? ??????????? ???? ??????????? ? ????????????? ?????????. ?????? ?? ???????????? ???????????? ?????????? ????????????? ??????????. ??????? ????? ? ????, ??? ???????? ????????? ???????. ?????????? ???????? ????????????? ?? ????????? ??????? ????? ?????.
Для достоверного отображения объективно существующих в экономике процессов необходимо выявить существенные взаимосвязи и не только выявить, но и дать им количественную оценку. Этот подход требует вскрытия причинных зависимостей. Под причинной зависимостью понимается такая связь между процессами, когда изменение одного из них является следствием изменения другого.[4]
Не все факторы, влияющие на экономические процессы, являются случайными величинами. Поэтому при анализе экономических явлений обычно рассматриваются связи между случайными и неслучайными величинами. Такие связи называются регрессионными, а метод математической статистики, их изучающий, называется регрессионным анализом. ??????????, ??? ???????????? ????? ??? ??????????. ????????? ??????????? ????????????, ?????????? ??? ?????????? ?? ?????? ????? ????????? ??????????. ??? ???? ?? ??????? ?????????? ??????????? ?????????, ?? ????????. ??? ?????? ?????????? ????????? ?????????? ???????????? ??????????, ??????? ????????????? ?????? ??? ??????? ????????????? ????????. ??????, ???? ?? ????????? ????????? ??????????? ??????????, ??????????? ?????????? ?????????? ?????. ????????? ????????? ?????????? ??????. ???????? ????????? ?????? ?????????? ?????? ???? ???????????? ????????????? ? ????????, ???????? ?? ????????? ??????????, ??????? ?? ???????? ?????????????. ????? ?????? ?????????? ??????? ?????????? ????????????? ??????: ?? ?????? ?????????? ???????????? ???? ?????????? ? ??????? ???? ??????. ???????? ?????????? ???????????????? ?????????? ?????? ??????????? ? ????????? ?????? ??????????. ?? ?? ?????????? ?????? ?????? ? ?????????? ???????????. ?? ????????? ????????? ???????? ??? ???????? ??????????.
1. Основные понятия.
С целью математического описания конкретного вида зависимостей с использованием регрессионного анализа подбирают класс функций, связывающих результативный показатель y и аргументы x1, x2,…,хk , отбирают наиболее информативные аргу-менты, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют точность полученного уравнения.[8]
Функция f(x1, x2,…,хk ), описывающая зависимость условного среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии.
Термин "регрессия" (лат. - "regression" - отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтпном и связан только со спецификой одного из первых конкретных примеров, в котором это понятие было использовано.
Обрабатывая статистические данные в связи с вопросом о наследственности роста, Ф.Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).
Для точного описания уравнения регрессии необходимо знать услов-ный закон распределения результативного показателя у. В статистической практике такую информацию получить обычно не удается, поэтому ограничиваются поиском подходящих аппроксимаций для функции f( x1, x2,…,хk ), основанных на исходных статистических данных.
В рамках отдельных модельных допущений о типе распределения век-тора показателей (у, x1, x2,…,хk ) может быть получен общий вид уравнения регрессии f(x)=M(y/x) x=( x1, x2,…,хk ). Например, в предложении, что исследуемая совокупность показателей подчиняется (k + 1) - мерному нормальному закону распределения с вектором математических ожиданий
M =,
где Mx = , y = MY
и ковариационной матрицей = ,
где yy = 2у = M (y-My);
yx = ; xx = ;
ij = M (xi - Mxi);(xj - Mxj); jj = j = M (xj - Mxj).[12]
Из этого следует, что уравнение регрессии (условное математическое ожидание) имеет вид:
M(y/x) = y + (x - Mx).
Таким образом, если многомерная случайная величина (у, x1, x2,…,хk ) подчиняется (k +1)-мерному нормальному закону распределения, то уравнение регрессии результативного показателя у по объясняющим переменным x1, x2,…,хk имеет линейный по х вид. ????? ????????? ? ?????????? ?????????? ??????? ? ?????????. ?? ????????? ????????, ??????????????? ?????????????? ??? ????????? ????????? ?????????????? ?????????, ?????????? ????, ??????? ????? ????? ?????? ?????????????? ????????????. ????? ?????????? ?? ?? ????????? ??? ???? ????????? ??????????, ??? ???? ? ?.?. ????????? ??????????? ?? ??? ???, ???? ? ????????? ?? ????? ???????? ??? ????????? ?????????? ??????????????, ??????????????? ????????? ?????????? ?????????. ?????????: ?? ????????? ???????????? ???????? ????????? ?????????? ?????????? ????????? ??????????????? ?????? ?????????? ??????????. ??????????, ??????????? ????????????? ??????????. ?????????? ??????????, ??????????? ??????????, ???????????? ???????????. ????????? ?????????? ??????? ????????????? ????????? ????????? ????? ???? ??????? ?????????? ???????? ????????? ??????????, ?????? ??? ????? ???? ????????? ? ???, ??? ???????? ??????????, ? ??? ??? ??? ?? ??????????.
Однако в статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии f(x), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных эначениях аргументов х=х.
Рассмотрим взаимоотношение между истиной f(х)= M(y/x), модельной у и оценкой у регрессии. ?????? ??? ????????? ??????????? ????? ???????????, ???? ??????????????? ?????????? ? ?????????? ????????? ????????? ??? ????????????????? ??????????, ?? ?????? ????????????? ????????? ???????? ?? ?? ?????????? ???????? ?????? ? ???, ????? ???????? ? ??????? ??????? ?????? ?? ???????. ?????????????? ??????????. ???? ????????????. ???????????? ? ????????? ????????? ???????? ??? ?????????? ????????? ????????? ???? ?????????? ? ????????. ? ?????? ??????????? ????? ??????????? ? ?????? ????? ????????? ????? ??????????? ???????? ????. ?????????? ? ?????????? ???????????? ?????????. ????? ????????? ??????????? ????????????, ?????????? ??? ?????????? ????????? ?????????, ? ??????? ? ???????? ????????? ?????????? ????? ?????? ??????????. ?? ????????? ?????, ??? ???????? ???????????? ??? ????????????, ??? ??????? ?????????? ??????? ? ?????????? ???????????. ??? ?????????? ????? ????????????? ?????????. ? ?????? ?????? ?????????? ??????????? ?? ???????????? ?????????? - ??????????? ???????? ??? ??????? ????????????? ???????????? ???????? ???????? ??????????, ??????? ?? ?????????? ????????, ??? ??????????. ?????????? ????????? ?????????? ? ?????????. ??? ???????????????? ??????? ?????????? ????????????? ?????????????, ?????????? ?? ?????????? ????????? ? ?????????? ??????????.
Пусть результативный показатель у связан с аргументом х соотноше-нием::
y = + ,
где - случайная величина, имеющая нормальный закон распределения, при-чем М = 0 и
D = .
Истинная функция регрессии в этом случае имеет вид:
F(x) = M(y/x) = 2x.
Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятъю наблюдениями над двумерной случайной величиной, связанной соотношением уi = 2x+ i, и предcтавленной на рисунке:
у
70
60
50
40
30
20
10
0
0 2 4 6 8 10
Взаимное расположение истинной f(x) и теоритической у модели регрессии.
Расположение точек на рисунке позволяет ограничиться классом линейных зависимостей вида: у = 0 + 1 x.[2]
С помощью метода наименьших квадратов найдем оценку уравнения регрессии
у = b0 +b1 x.
Дли сравнения на рисунке приводятся графики истинной функции регрессии f{х) =2x, теоретической аппроксимирующей функции рег-рессии = 0 + 1 x. К последней сходится по вероятности оценка уравнения регрессии при неограниченном увеличении объема выборки (n ).
Поскольку мы ошиблись в выборе класса функции регрессии, что, к сожалению, достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки не будут обла-дать свойством состоятельности, т.е., как бы
мы не увеличивали объем наблюдений, наша выборочная оценка не будет сходиться к истинной функции регрессии f(х). ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).
Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(x) с помощью объяснялась бы только ограниченностью выборки и, следовательно, она могла бы быть сделана сколько угодно малой при n .
С целью наилучшего восстановления по исходным статистическим данным условного значения результатирующего показателя у(х) и неизвестной функции регрессии f(x) = M(y/x) наиболее часто используют следующие критерии адекватности (функции потерь).[7]
1. Метод наименьших квадратов, согласно которому минимизируется квадрат отклонения наблюдаемых значений результативного показателя yi(i=1,2,…,n) от модельных значений i = f(xi, ), где = (0, 1,…,k)- коэффициенты уравнения регрессии, xi - значение вектора аргументов в i-м наблюдении:
.
Решается задача отыскания оценки вектора . Получаемая регрессия называется среднеквадратической. ?? ??? ?????? ????????? ?????????? ???????? ????????. ?????? ????????????? ????????? ?? ?????????? ???????????? ??????????? ???????, ?? ????????, ???, ??? ??????? ????? ??????????, ????????????? ?????? ?????????????? ?????????. ??? ????????? ?????? ????????????? ????????? ?????????????? ????? ????????? ?????? ?????????. ? ?????? ??????????? ??????????, ??????????? ?????? ??? ??????. ?????????? ?? ???????? ????????????? ???????????? ??? ???????? ?????????????? ??????? ???? ????????????? ????????? ?? ???? ???????? ?????? ????????????? ???????? ???????? ????????? ?????????? ???????????? ????????. ??? ????? ????????? ?? ??? ????? ????????? ???????. ?????????? ? ???????? ???????? ????????? ???? ????????????? ????????????? ????? ????????????? ?????? ?, ???????????, ?? ???? ?????????? ?????????, ???????? ?? ???????????? ???????????? ????????. ???????????? ???????????? ? ????????????? ??????????. ??? ????????? ???????? ?????????, ????????? ?? ????????? ????????? ??????????, ??????? ??????????? ???? ??????????? ? ????????????? ?????????. ?????? ?? ???????????? ???????????? ?????????? ????????????? ??????????. ??????? ????? ? ????, ??? ???????? ????????? ???????. ?????????? ???????? ????????????? ?? ????????? ??????? ????? ????? 2. Метод наименьших модулей, согласно которому минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений = f(xi, ), т.е.
.
Получаемая регрессия называется среднеабсолютной (медианой).
3. Метод минимакса сводится к минимизации максимума модуля отклонения наблюдаемого значения результативного показателя yi от модельного значения f(xi, ), т.е.
.
Получаемая при этом регрессия называется минимаксной. ??????????, ??? ???????????? ????? ??? ??????????. ????????? ??????????? ????????????, ?????????? ??? ?????????? ?? ?????? ????? ????????? ??????????. ??? ???? ?? ??????? ?????????? ??????????? ?????????, ?? ????????. ??? ?????? ?????????? ????????? ?????????? ???????????? ??????????, ??????? ????????????? ?????? ??? ??????? ????????????? ????????. ??????, ???? ?? ????????? ????????? ??????????? ??????????, ??????????? ?????????? ?????????? ?????. ????????? ????????? ?????????? ??????. ???????? ????????? ?????? ?????????? ?????? ???? ???????????? ????????????? ? ????????, ???????? ?? ????????? ??????????, ??????? ?? ???????? ?????????????. ????? ?????? ?????????? ??????? ?????????? ????????????? ??????: ?? ?????? ?????????? ???????????? ???? ?????????? ? ??????? ???? ??????. ???????? ?????????? ???????????????? ?????????? ?????? ??????????? ? ????????? ?????? ??????????. ?? ?? ?????????? ?????? ?????? ? ?????????? ???????????. ?? ????????? ????????? ???????? ??? ???????? ??????????.
В практических положениях часто встречаются задачи, в которых изучается случайная величина у, зависящая от некоторого множества переменных x1, x2,…,хk и неизвестных параметров j(j=0,1,2,…,k). Будем рассматривать (у, x1, x2,…,хk ) как
(k +1) - мерную генеральную совокупность, из которой взята случайная выборка объемов n, где (уi,xi1,xi2,…,xik) результат i-го наблюдения i=1,2,…,n. Требуется по результатам наблюдений оценить неизвестные параметры j(j=0,1,2,…,k). [4]
1.1. Функциональные и стохастические связи.
Между различными явлениями и их признаками необходимо прежде всего выделить 2 типа связей: функциональную (жестко детерминированную) и статистическую (стохастически детерминированную).
В соответствии с жестко детерминистическим представлением о функционировании экономических систем необходимость и закономерность однозначно проявляются в каждом отдельном явлении, то есть любое действие вызывает строго определенный результат; случайными (непредвиденными заранее) воздействиями при этом пренебрегают. Поэтому при заданных начальных условиях состояние такой системы может быть определено с вероятностью, равной 1. Разновидностью такой закономерности является функциональная связь. ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).
Связь признака у с признаком х называется функциональной, если каждому возможному значению независимого признака х соответствует 1 или несколько строго определенных значений зависимого признака у. Определение функциональной связи может быть легко обобщено для случая многих признаков х1,х2 …хn . ????? ????????? ? ?????????? ?????????? ??????? ? ?????????. ?? ????????? ????????, ??????????????? ?????????????? ??? ????????? ????????? ?????????????? ?????????, ?????????? ????, ??????? ????? ????? ?????? ?????????????? ????????????. ????? ?????????? ?? ?? ????????? ??? ???? ????????? ??????????, ??? ???? ? ?.?. ????????? ??????????? ?? ??? ???, ???? ? ????????? ?? ????? ???????? ??? ?????????, ?????????? ??????????????, ??????????????? ????????? ?????????? ?????????. ?????????: ?? ????????? ???????????? ???????? ????????? ?????????? ?????????? ????????? ??????????????? ?????? ?????????? ??????????. ??????????, ??????????? ????????????? ??????????. ?????????? ??????????, ??????????? ??????????, ???????????? ???????????. ????????? ?????????? ??????? ????????????? ????????? ????????? ????? ???? ??????? ?????????? ???????? ????????? ??????????, ?????? ??? ????? ???? ????????? ? ???, ??? ???????? ??????????, ? ??? ??? ??? ?? ??????????.
Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющих значение зависимого (результативного) признака, а также точный механизм их влияния, выраженный определенным уравнением.
Функциональную связь можно представить уравнением:
yi= (xi),
где yi - результативный признак ( i = 1, … , n);
f(xi) - известная функция связи результативного и факторного признаков;
xi - факторный признак.[11]
В реальной общественной жизни ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стахостической.
Стахостическая связь - это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин х1,х2 …хn (случайных или неслучайных) изменением закона распределения. Это обуславливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.
Характерной особенностью стахостических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице. Причём неизвестен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком. Всегда имеет место влияние случайного. Появляющиеся различные значения зависимой переменной - реализация случайной величины. ?????? ??? ????????? ??????????? ????? ???????????, ???? ??????????????? ?????????? ? ?????????? ????????? ????????? ??? ????????????????? ??????????, ?? ?????? ????????????? ????????? ???????? ?? ?? ?????????? ???????? ?????? ? ???, ????? ???????? ? ??????? ??????? ?????? ?? ???????. ?????????????? ??????????. ???? ????????????. ???????????? ? ????????? ????????? ???????? ??? ?????????? ????????? ????????? ???? ?????????? ? ????????. ? ?????? ??????????? ????? ??????????? ? ?????? ????? ????????? ????? ??????????? ???????? ????. ?????????? ? ?????????? ???????????? ?????????. ????? ????????? ??????????? ????????????, ?????????? ??? ?????????? ????????? ?????????, ? ??????? ? ???????? ????????? ?????????? ????? ?????? ??????????. ?? ????????? ?????, ??? ???????? ???????????? ??? ????????????, ??? ??????? ?????????? ??????? ? ?????????? ???????????. ??? ?????????? ????? ????????????? ?????????. ? ?????? ?????? ?????????? ??????????? ?? ???????????? ?????????? - ??????????? ???????? ??? ??????? ????????????? ???????????? ???????? ???????? ??????????, ??????? ?? ?????????? ????????, ??? ??????????. ?????????? ????????? ?????????? ? ?????????. ??? ???????????????? ??????? ?????????? ????????????? ?????????????, ?????????? ?? ?????????? ????????? ? ?????????? ??????????.
Модель стохастической связи может быть представлена в общем виде уравнением:
yi = (xi) + i ,
где yi - расчётное значение результативного признака;
f(xi) - часть результативного признака, сформировавшаяся под воздействием учтенных известных факторных признаков(одного или множества), находящихся в стахостической связи с признаком;
i - часть результативного признака, возникшая в следствие действия неконтролируемых или неучтенных факторов, а также измерения признаков, неизбежно сопровождающегося некоторыми случайными ошибками. ?? ??? ?????? ????????? ?????????? ???????? ????????. ?????? ????????????? ????????? ?? ?????????? ???????????? ??????????? ???????, ?? ????????, ???, ??? ??????? ????? ??????????, ????????????? ?????? ?????????????? ?????????. ??? ????????? ?????? ????????????? ????????? ?????????????? ????? ????????? ?????? ?????????. ? ?????? ??????????? ??????????, ??????????? ?????? ??? ??????. ?????????? ?? ???????? ????????????? ???????????? ??? ???????? ?????????????? ??????? ???? ????????????? ????????? ?? ???? ???????? ?????? ????????????? ???????? ???????? ????????? ?????????? ???????????? ????????. ??? ????? ????????? ?? ??? ????? ????????? ???????. ?????????? ? ???????? ???????? ????????? ???? ????????????? ????????????? ????? ????????????? ?????? ?, ???????????, ?? ???? ?????????? ?????????, ???????? ?? ???????????? ???????????? ????????. ???????????? ???????????? ? ????????????? ??????????. ??? ????????? ???????? ?????????, ????????? ?? ????????? ????????? ??????????, ??????? ??????????? ???? ??????????? ? ????????????? ?????????. ?????? ?? ???????????? ???????????? ?????????? ????????????? ??????????. ??????? ????? ? ????, ??? ???????? ????????? ???????. ?????????? ???????? ????????????? ?? ????????? ??????? ????? ?????.
Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся, и зависимость, если она имеет существенную силу, проявится достаточно отчётливо. [6]
Корреляционная связь существует там, где взаимосвязанные явления характеризуются только случайными величинами. При такой связи среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины х или других случайных величин х1,х2 …хn. Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционных связей присуще многим общественным явлениям. ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).
Корреляционная связь - понятие более узкое, чем стохастическая связь. Последняя может отражаться не только в изменении средней величины, но и в вариации одного признака в зависимости от другого, то есть любой другой характеристики вариации. Таким образом, корреляционная связь является частным случаем стохастической связи.
Прямые и обратные связи. В зависимости от направления действия, функциональные и стахостические связи могут быть прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, то есть с увеличением факторного признака увеличивается и результативный, и, наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда - прямая связь. А чем выше производительность труда, тем ниже себестоимость единицы продукции - обратная связь. ??????????, ??? ???????????? ????? ??? ??????????. ????????? ??????????? ????????????, ?????????? ??? ?????????? ?? ?????? ????? ????????? ??????????. ??? ???? ?? ??????? ?????????? ??????????? ?????????, ?? ????????. ??? ?????? ?????????? ????????? ?????????? ???????????? ??????????, ??????? ????????????? ?????? ??? ??????? ????????????? ????????. ??????, ???? ?? ????????? ????????? ??????????? ??????????, ??????????? ?????????? ?????????? ?????. ????????? ????????? ?????????? ??????. ???????? ????????? ?????? ?????????? ?????? ???? ???????????? ????????????? ? ????????, ???????? ?? ????????? ??????????, ??????? ?? ???????? ?????????????. ????? ?????? ?????????? ??????? ?????????? ????????????? ??????: ?? ?????? ?????????? ???????????? ???? ?????????? ? ??????? ???? ??????. ???????? ?????????? ???????????????? ?????????? ?????? ??????????? ? ????????? ?????? ??????????. ?? ?? ?????????? ?????? ?????? ? ?????????? ???????????. ?? ????????? ????????? ???????? ??? ???????? ??????????.
Прямолинейные и криволинейные связи. По аналитическому выражению (форме) связи могут быть прямолинейными и криволинейными. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически - прямой линией. Отсюда ее более короткое название - линейная связь. При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно, или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).
Однофакторные и многофакторные связи. По количеству факторов, действующих на результативный признак, связи различаются: однофакторные (один фактор) и многофакторные (два и более факторов). Однофакторные (простые) связи обычно называются парными (т.к. рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, то есть одновременно и во взаимосвязи. Например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками. С помощью множественной корреляции можно охватить весь комплекс факторных признаков и объективно отразить существующие множественные связи. ????? ????????? ? ?????????? ?????????? ??????? ? ?????????. ?? ????????? ????????, ??????????????? ?????????????? ??? ????????? ????????? ?????????????? ?????????, ?????????? ????, ??????? ????? ????? ?????? ?????????????? ????????????. ????? ?????????? ?? ?? ????????? ??? ???? ????????? ??????????, ??? ???? ? ?.?. ????????? ??????????? ?? ??? ???, ???? ? ????????? ?? ????? ???????? ??? ?????????, ?????????? ??????????????, ??????????????? ????????? ?????????? ?????????. ?????????: ?? ????????? ???????????? ???????? ????????? ?????????? ?????????? ????????? ??????????????? ?????? ?????????? ??????????. ??????????, ??????????? ????????????? ??????????. ?????????? ??????????, ??????????? ??????????, ???????????? ???????????. ????????? ?????????? ??????? ????????????? ????????? ????????? ????? ???? ??????? ?????????? ???????? ????????? ??????????, ?????? ??? ????? ???? ????????? ? ???, ??? ???????? ??????????, ? ??? ??? ??? ?? ??????????.
1.2. Статистические методы моделирования связи.
Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы.[1]
Метод сопоставления двух параллельных рядов является одним из простейших методов. Для этого факторы, характеризующие результативный признак располагают в возрастающем или убывающем порядке (в зависимости от эволюции процесса и цели исследования), а затем прослеживают изменение величины результативного признака. Сопоставление и анализ расположенных таким образом рядов значений изучаемых величин позволяют установить наличие связи и ее направление. Зависимость между факторами и показателями может прослеживаться во времени (параллельные динамические ряды). ?????? ??? ????????? ??????????? ????? ???????????, ???? ??????????????? ?????????? ? ?????????? ????????? ????????? ??? ????????????????? ??????????, ?? ?????? ????????????? ????????? ???????? ?? ?? ?????????? ???????? ?????? ? ???, ????? ???????? ? ??????? ??????? ?????? ?? ???????. ?????????????? ??????????. ???? ????????????. ???????????? ? ????????? ????????? ???????? ??? ?????????? ????????? ????????? ???? ?????????? ? ????????. ? ?????? ??????????? ????? ??????????? ? ?????? ????? ????????? ????? ??????????? ???????? ????. ?????????? ? ?????????? ???????????? ?????????. ????? ????????? ??????????? ????????????, ?????????? ??? ?????????? ????????? ?????????, ? ??????? ? ???????? ????????? ?????????? ????? ?????? ??????????. ?? ????????? ?????, ??? ???????? ???????????? ??? ????????????, ??? ??????? ?????????? ??????? ? ?????????? ???????????. ??? ?????????? ????? ????????????? ?????????. ? ?????? ?????? ?????????? ??????????? ?? ???????????? ?????????? - ??????????? ???????? ??? ??????? ????????????? ???????????? ???????? ???????? ??????????, ??????? ?? ?????????? ????????, ??? ??????????. ?????????? ????????? ?????????? ? ?????????. ??? ???????????????? ??????? ?????????? ????????????? ?????????????, ?????????? ?? ?????????? ????????? ? ?????????? ?????????? Метод аналитических группировок тоже относится к простейшим методам. Чтобы выявить зависимость с помощью этого метода, нужно произвести группировку единиц совокупности по факторному признаку и для каждой группы вычислить среднее или относительное значение результативного признака. Сопоставляя затем изменения результативного признака по мере изменения факторного можно выявить направление, характер и тесноту связи между ними. ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).
В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. ?? ??? ?????? ????????? ?????????? ???????? ????????. ?????? ????????????? ????????? ?? ?????????? ???????????? ??????????? ???????, ?? ????????, ???, ??? ??????? ????? ??????????, ????????????? ?????? ?????????????? ?????????. ??? ????????? ?????? ????????????? ????????? ?????????????? ????? ????????? ?????? ?????????. ? ?????? ??????????? ??????????, ??????????? ?????? ??? ??????. ?????????? ?? ???????? ????????????? ???????????? ??? ???????? ?????????????? ??????? ???? ????????????? ????????? ?? ???? ???????? ?????? ????????????? ???????? ???????? ????????? ?????????? ???????????? ????????. ??? ????? ????????? ?? ??? ????? ????????? ???????. ?????????? ? ???????? ???????? ????????? ???? ????????????? ????????????? ????? ????????????? ?????? ?, ???????????, ?? ???? ?????????? ?????????, ???????? ?? ???????????? ???????????? ????????. ???????????? ???????????? ? ????????????? ??????????. ??? ????????? ???????? ?????????, ????????? ?? ????????? ????????? ??????????, ??????? ??????????? ???? ??????????? ? ????????????? ?????????. ?????? ?? ???????????? ???????????? ?????????? ????????????? ??????????. ??????? ????? ? ????, ??? ???????? ????????? ???????. ?????????? ???????? ????????????? ?? ????????? ??????? ????? ?????.
1.3. Статистическое моделирование связи методом корреляционного и регрессионного анализа.
Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак. [4]
Задачами регрессионного анализа являются выбор типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчётных значений зависимой переменной (функции регрессии). ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.