На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Основные понятия, леммы и предложения. Доказательство основной теоремы. Полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания. Основные трудности при работе с полукольцами.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 08.08.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


- 17 -
Министерство Образования Российской Федерации

Математический факультет
Кафедра алгебры и геометрии



Выпускная квалификационная работа

«Редуцированные полукольца»



Работу выполнил студент
математического факультета
\Подпись\ ____________
Научный руководитель:
К.физ.-мат. наук
.
\Подпись\ ____________
Рецензент:
Д. физ.-мат. наук, профессор
.
\Подпись\ ____________
Допущен к защите в ГАК
Зав. кафедрой ___________________.
«___»________________
Декан факультета _______________.
«___»________________
Киров, 2003.
План.
1. Введение.
2. Основные понятия, леммы и предложения.
3. Доказательство основной теоремы.


1.Введение
Определение 1. Непустое множество S с бинарными операциями + и называется полукольцом, если выполняются следующие аксиомы:
1. (S, +) коммутативная полугруппа с нейтральным элементом 0;
2. (S, ) полугруппа с нейтральным элементом 1;
3. умножение дистрибутивно относительно сложения:
a(b + c) = ab + ac, (a + b)c = ac + bc
для любых a, b, c S;
4. 0a = 0 = a0 для любого a S.
Итак, по принятому нами определению полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания и именно это вызывает основные трудности при работе с полукольцами.
В настоящей работе рассмотрен такой класс полуколец, как редуцированные полукольца.
Определение 2. Полукольцо S называется редуцированным, если для любых a, bS выполняется a = b, как только a+ b= ab + ba.
Целью данной работы является доказательство следующей теоремы.
Теорема . Для всякого редуцированного полукольца S равносильны следующие условия:
1. S слабо риккартово;
2. a, bS (D(a)D(b)= =);
3. все идеалы Op, PSpec S, первичны(эквивалентно, вполне первичны, псевдопросты);
4. все идеалы OM, M Max S, первичны (эквивалентно, вполне первичны, псевдопросты) и P M Op=OM для P Spec S и M Max S;
5. каждый первичный идеал полукольца S содержит единственный минимальный первичный идеал;
6. a, b S (ab = 0 Ann a + Ann b = S);

Эта теорема обобщает факты, доказанные в классе колец ([1]).

2.Основные понятия, леммы и предложения

Для доказательства нашей теоремы нам потребуется определить некоторые понятия и вывести несколько фактов.

Определение 3. Полукольцо S называется симметрическим, если для любых элементов a, b, b, c S выполняется

abc = abc acb = acb.

Определение 4. Элемент aS называется нильпотентным, если в последовательности a, a, a,…, a, … встретится нуль.

Предложение 1. Редуцированное полукольцо S является симметрическим полукольцом без нильпотентов.

Доказательство: Пусть ab = ab. Тогда

baba = baba и baba = baba,

откуда

baba + baba = baba + baba

или иначе

(ba)+ (ba)= baba + baba.

В силу редуцированности ba = ba, т.е.

ab = ab ba = ba. (1)

Аналогично доказывается ba = ba ab = ab.

Пусть ab = ab. Тогда с помощью (1) ba = ba, откуда bac = bac и acb = acb. Значит, имеем:

ab = ab acb = acb, ba = ba bca = bca. (2)

Пусть сейчас abc = abc. Тогда

abc = abc acbc = acbc acbac = acbac acbacb = acbacb и

acbacb = acbacb (acb)+ (acb)= acbacb + acbacb acb = acb.

Таким же образом доказывается другая импликация.

Пусть a+ b= ab + ba влечёт a = b. При b = 0 получаем a= 0 a = 0. Если с= 0 для некоторого натурального n 2, то c= 0 для k с условием n 2. Получаем, что c= 0, и так далее. На некотором шаге получим c= 0, откуда с = 0. Предложение доказано.

Пример. Рассмотрим полукольцо S = {0, a, b, 1}, операции в котором заданы следующим образом:

+
a b 1

a

b

1

a b 1

b b b

1 b 1

a b 1

a

b

1

a a a

b b b

a b 1

Пример этого полукольца показывает, что, во-первых, в определении симметричности полукольца импликации нужны в обе стороны, поскольку aa = ab, но aa ba. Во-вторых, S - полукольцо без нильпотентов, более того, без делителей нуля; однако симметрическим, в частности, редуцированным, оно не является. В этом проявляется отличие от колец, поскольку известно, что отсутствие нильпотентов в кольце влечёт кольцевую симметричность.

Определение 5. Собственный двусторонний идеал P полукольца S называется первичным, если AB P влечёт A P или B P для любых идеалов A и B. Первичный идеал коммутативного полукольца называется простым.

Определение 6. Правый идеал P полукольца S называется псевдопростым, если ab = 0 влечёт a P или b P для a, b S.

Предложение 2. Идеал P полукольца S первичен тогда и только тогда, когда для любых элементов a, b S \ P найдётся элемент s S такой, что asb P. Если S коммутативное полукольцо, то идеал P прост тогда и только тогда, когда a, b P влечёт ab P.

Доказательство: Пусть P первичен и элементы a, b P. Тогда главные идеалы (a) и (b) не лежат в P, как и их произведение. Значит, некоторый элемент t aSb не принадлежит P, поскольку t = для некоторых u,v,w S, то хотя бы для одного i {1,…,k} a vb P, ибо в противном случае каждое слагаемое uavbw лежит в P, и следовательно, t P.

Обратно. Пусть произведение идеалов A и B лежит в P, но A P. Тогда найдётся a A \ P. Предположим, что B P. Получим, что некоторый элемент b B \ P и по условию asb P для подходящего s S. Но тогда и AB P, и следовательно, P первичный идеал.

Утверждение для коммутативного случая очевидно.

Определение 7. Подмножество T полукольца называется mсистемой, если 0 T, 1 T и для любых a, b T найдётся такой s S, что asb T.

Пример. Рассмотрим множество T = {a,a, a, … , a}, где n и a 0. Оно является подмножеством полукольца Rнеотрицательных действительных чисел с обычными операциями сложения и умножения. 0 T, 1 T и для a,a T с = 1S : aсa= a T. Таким образом, T является mсистемой.

Легко увидеть, что если P - первичный идеал, то S \ P является m-системой. И хотя дополнение до mсистемы не обязано быть первичным идеалом, следующее утверждение показывает, что между ними существует глубокая связь.

Предложение 3. Пусть T mсистема, а J произвольный идеал полукольца S, не пересекающийся с T. Тогда любой максимальный идеал среди содержащих J и не пересекающихся с T первичен.

Доказательство: Пусть P J, P T = и P максимальный в семействе идеалов, удовлетворяющих этим условиям. Допустим, что aSb P для некоторых a, b P. Идеалы P + SaS и P + SbS строго содержат идеал P, и значит, пересекаются с T. Пусть m (P + SaS) T, r (P + SbS) T и msr T для некоторого sS. Но, с другой стороны,

msr (P + SaS) (P + SbS) P +SaSbS P.

Получили противоречие, что P пересекается с T. Значит, предположение, что aSb P неверно, и P первичный идеал. Предложение доказано.

Определение 8. Собственный идеал M полукольца S называется максимальным идеалом, если M A влечёт M = A или A = S для каждого идеала A.

Предложение 4. Максимальный идеал полукольца первичен.

Доказательство: Рассмотрим нулевой идеал J и не пересекающуюся с ним mсистему T = {1}. Любой максимальный идеал M полукольца содержит J и не пересекается с T, значит, по предложению 3 он будет первичным.

Определение 9. Для любого a S множество

Ann aS = {t S: (s S) ast=0} называется аннулятором элемента a.

Ann aS является двусторонним идеалом полукольца S.

Ann a ={s S: as = 0} правый идеал и Ann aS Ann a.

Определение 10. Для любого идеала P множество Op = {s S: (tP) sSt = 0} = {s S: Ann sS P} называется Oкомпонентой идеала P.

Лемма 1. Op является идеалом для любого первичного идеала P.

Доказательство: Пусть a, b Op. Тогда aSt = 0 и bSu = 0 для некоторых t, u P. В силу первичности P tsu P для подходящего s S. Для любого v S

(a + b)vtsu = (avt)su + b(vts)u = 0.

Далее, (as)vt = a(sv)t = 0, (sa)vt = s(avt) = s0 = 0, поэтому a + b, sa, as Op, и Op идеал.

Лемма 2. Пусть P M первичные идеалы полукольца.

Тогда OM Op P.

Доказательство: Пусть a OM, тогда aSt = 0 для некоторого t M. Поскольку t P, то a Op, и значит, OM Op. Для любого s S 0 = ast P. Поскольку P первичен, то a P или t P, отсюда a P, и следовательно, Op P.

Лемма 3. Для произвольных первичных идеалов P и P симметрического полукольца S верна импликация:

P P не содержит первичных идеалов Op P.

Доказательство: Предположим, что Op P. Полагая A = S \ P и B = S \ P, рассмотрим множество AB всевозможных конечных произведений элементов из A B. Покажем, что AB Op = . В самом деле, если s AB Op, то sb = 0 для некоторого b A, т.е. {0} AB. Поскольку s является произведением элементов из A B, то в силу первичности идеалов P и P и свойства симметрических полуколец uv = 0 для подходящих u B, v A. Откуда u Op P противоречие.

Таким образом, AB является mсистемой, и значит, существует первичный идеал Q, не пересекающийся с AB и содержащий Op. А так как A B AB, то P P Q. Получили противоречие с условием, значит наше предположение неверно, и Op P.

Следствие 1. Для произвольных первичных идеалов P и P в симметрическом полукольце, если Op P , то пересечение P и P содержит хотя бы один первичный идеал.

Определим множество (a, b) = {s S: xS (axs = bxs)} идеал полукольца S для a, b S.Очевидно, (a, 0) = Ann aS.

Для произвольного идеала A обозначим пересечение первичных идеалов полукольца S, содержащие идеал A.

Определение 11. Полукольцо S называется строго полупервичным и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.