На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Свойства твердых тел

Информация:

Тип работы: реферат. Добавлен: 08.08.2012. Сдан: 2011. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):


                                               Содержание 

Введение........................................................................................................................2
1. Твердые тела и их превращение в жидкости: типы кристаллических твердых тел.....................................................................................................................................4
2. Упругие свойства твердых тел, плавление, кристаллизация................................15
Заключение................................................................................................................20
Список  литературы...............................................................................................22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 Введение
    Физика твердого тела – один из тех столпов, на которых покоится современное технологическое общество. В сущности, вся армия инженеров работает над наилучшим использованием твердых материалов при проектировании и изготовлении самых разнообразных инструментов, станков, механических и электронных компонентов, необходимых в таких областях, как связь, транспорт, компьютерная техника, а также фундаментальные исследования.
    Исследователя, работающего в области физики твердого тела, интересуют такие материалы, как металлы и сплавы, полупроводники, диэлектрики и магнитные материалы. Многие из них относятся к кристаллическим веществам: их атомы расположены так, что образуют правильную трехмерную решетку – периодическую структуру. Нарушения идеальной периодичности могут быть обусловлены химическими примесями, незаполненными (вакантными) атомными узлами, атомами внедрения (в промежутках между узлами), а также дислокациями. Во многих случаях подобными нарушениями или отклонениями от строгой периодичности существенным образом определяются физические свойства кристаллических твердых тел. Управляя концентрацией подобных дефектов или целенаправленно создавая их, можно получать «наперед заданные» свойства твердых тел. Такая технология играет первостепенную роль, например, в области полупроводниковой микроэлектроники. Другой класс материалов, представляющий интерес для физики твердого тела, – это стеклообразные, или аморфные, материалы. Атомы в таких материалах располагаются в общем так же, как и в жидкостях, т.е. они упорядочены лишь в пределах нескольких межатомных расстояний от каждого атома, принятого за центральный. Иначе говоря, для стекол характерен ближний порядок в расположении атомов, а не дальний, как в кристаллической структуре.
    Долгое время казалось, что самое интересное в физике - это исследования микромира и микрокосмоса. Именно там пытались найти ответы на наиболее важные, фундаментальные вопросы, объясняющие устройство окружающего мира. А сейчас образовался третий фронт исследований - изучение твёрдых тел.
    Почему же так важно исследовать твёрдые тела?
    Огромную роль, конечно, играет здесь практическая деятельность человека. Твёрдые тела - это металлы и диэлектрики, без которых немыслима электротехника, это - полупроводники, лежащие в основе современной электроники, магниты, сверхпроводники, конструкционные материалы. Словом, можно утверждать, что научно-технический прогресс в значительной мере основан на использовании твёрдых тел.
    Но не только практическая сторона дела важна при их изучении. Сама внутренняя логика развития науки - физики твёрдого тела - привела к пониманию важности коллективных свойств больших систем.
    Твёрдое тело состоит из миллиарда частиц, которые взаимодействуют между собой. Это обусловливает появление определённого порядка в системе и особых свойств всего количества микрочастиц. Так, коллективные свойства электронов определяют электропроводность твёрдых тел, а способность тела поглощать тепло - теплоёмкость - зависит от характера коллективных колебаний атомов при тепловом движении. Коллективные свойства объясняют все основные закономерности поведения твёрдых тел.
    Структура твёрдых тел многообразна. Тем не менее, их можно разделить на два больших класса: кристаллы и аморфные тела. 
 
 
 
 

     
 
 
 
 

    1. Твердые тела и их превращение в жидкости: типы кристаллических твердых тел.
    Твердое тело – это агрегатное состояние вещества, отличительным признаками которого при нормальных условиях являются устойчивость формы и характер теплового движения структурных единиц твердое тело (атомов, ионов, молекул), совершающих малые колебания относительно некоторых фиксированных положений равновесия.
    Свойства твердого тела определяются их химическим составом и зависят от характера межатомных связей, типа кристаллической структуры и степени структурного совершенства, а также от фазового состава. В зависимости от кол-ва образующих их элементов твердое тело можно подразделить на простые (однокомпонентные) и сложные (многокомпонентные), которые, в свою очередь, могут представлять собой химические соединения,  либо твердые растворы различного типа (замещения, внедрения).
     Межатомные связи в твердое тело осуществляются в результате взаимодействия атомов (ионов) и валентных электронов, связь между атомами может быть ионной, ковалентной, металлической, а также ван-дер-ваальсовой, водородной. Для многих твердых тел характерен смешанный тип химической связи.
    Твердые тела бывают кристаллические и аморфные. Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц, симметрией кристаллической решетки (свойством отдельных узлов решетки совмещаться при транс-ляц. перемещении). Совокупность отдельных узлов решетки образует так называемую решетку Браве.
    Кристаллические твердые тела могут быть в виде монокристаллов или поликристаллов. В большинстве областей техники используют поликристаллические твердое тело, монокристаллы находят применение в электронике, производстве оптических приборов, ювелирных изделий и т. д. Структурно-чувствительные свойства твердого тела, связанные с перемещением частиц и квазичастиц, а также магнитных и электрических доменов и др. существенно зависят от типа и концентрации дефектов кристаллической решетки. Равновесные собств. точечные дефекты (напр., вакансии, межузельные атомы) термодинамически обусловлены и играют важную роль в процессах диффузии и самодиффузии в твердое тело Это используется в процессах гомогенизации, рекристаллизации, легирования и др. Ряд практически важных свойств твердого тела зависит от других видов структурных дефектов, имеющихся в кристаллах -дислокаций, малоугловых и межзеренных границ, включений и т.д.
    Для аморфного состояния твердого тела характерно наличие только ближнего порядка; оно термодинамически неустойчиво, однако при обычных т-рах переход в кристаллическое состояние обычно не реализуется и может осуществляться лишь при нагреве. Аморфные твердые тела, в отличие от большинства кристаллических, изотропны.
    По фазовому составу твердые тела разделяются на однофазные и многофазные. Форма и распределение фазовых составляющих могут оказывать сильное влияние на различные свойства многофазных твердых тел. К наиболее важным в практическом отношении свойствам твердых тел относят механические, электрические, тепловые, магнитные, оптические.
    Переход тела из жидкой (или газообразной) фазы к твердое состояние не обязательно сопровождается кристаллизацией тела, а может приводить к аморфизации тела, в том числе и к образованию стеклообразного состояния, которое получается из вязкого расплава при быстром его охлаждении, т. е. твердением без кристаллизации.
    При первом знакомстве с кристаллами прежде всего бросается в глаза их правильная многогранная форма. Этот образ кристалла в виде правильного многогранника возник у нас от драгоценных камней, природных минералок и искусственных кристаллов. Прозрачный кварц и красный рубин, мягкий тальк и сверхтвердый алмаз, микроскопические крупинки сахарного песка и гигантские сталактиты - вот лишь некоторые представители удивительно многообразного царства кристаллов.  Такие кристаллы часто называют монокристаллами, чтобы отличить их от поликристаллов - конгломерата микроскопических кристалликов, которыми является большинство минералов и металлов.
    Монокристалл может иметь и кубическую форму, как кристалл поваренной соли, форму ромбической призмы, как кристалл сегнетовой соли, октаэдра или плоского треугольника, как кристалл титаната бария. Его форма может быть и более сложной комбинацией простых геометрических фигур, но это - его естественная форма. Таким его сотворила природа.
    Принципиальными особенностями кристаллических тел являются их трансляционная симметрия, то есть тот факт, что в кристаллах их структура (пространственное расположение ее элементов) полностью повторяется через определенное расстояние, называемое периодом решетки.
    Принято говорить, что в отличие от дальнего порядка, наблюдаемого в кристаллах (упорядоченное расположение частиц в узлах кристаллической решетки сохраняется по всему объему кристалла), в жидкостях и аморфных телах имеет место ближний порядок в расположении частиц. Это означает, что по отношению к любой частице расположение ближайших соседей является упорядоченным, хотя и не так четко, как в кристалле, но по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным и довольно быстро (на расстоянии 3-4 эффективных диаметров молекулы) порядок в расположении частиц полностью исчезает.
    Ошибочным является представление, что переход вещества из жидкого состояния в твердое означает сближение молекул, которое сопровождается увеличением сил сцепления между ними, а это и создает «твердость» вещества. Дело в том, что некоторые вещества (вода, висмут, сурьма) при кристаллизации увеличиваются в объеме, следовательно средние расстояния между соседними молекулами у этих веществ будут в твердой фазе больше, чем в жидкой, хотя, безусловно, в твердой фазе молекулы будут прочнее связаны между собой. Исходя из этого можно утверждать, что решающим фактором в процессе отвердевания кристаллических тел является не уменьшение расстояния между соседними частицами, а ограничение свободы их теплового движения. Само же ограничение обусловлено увеличением сил связи между частицами, которое возникает при упорядоченном расположении их в кристалле.
    Итак, причиной геометрически правильной внешней формы кристалла является геометрически правильное внутреннее его строение - пространственная решетка. Пространственная решетка - это, конечно, абстракция. Просто в пространстве, которое занимает кристалл, наблюдается правильное, закономерное чередование атомов или ионов. Если их соединить воображаемыми прямыми, то получим пространственную решетку, в узлах которой располагаются атомы или ионы.
    Симметрия «правит» миром кристаллов. Это общее свойство, определяющее законы расположения структурных элементов в пространственной решетке, взаимное расположение граней макроскопического кристалла, диктующее, какими физическими свойствами может обладать кристалл и по каким пространственным направлениям в нем эти свойства проявляются. Свойство симметрии является проявлением общих фундаментальных законов природы. Вообще под симметрией следует понимать способность фигуры закономерно повторять в себе свои части.
    Симметрия внешней формы кристалла является проявлением геометрически правильного, симметричного расположения атомов и ионов. Симметрия кристалла кубической формы проявляется в том, что при повороте его вокруг оси, соединяющей центры противоположных граней, он совмещается сам с собой. Теперь вернемся к кубической решетке. Считая ее бесконечной (еще раз отметим, что в макроскопических масштабах мы имеем дело с громадным числом элементов кристалла; если ребро куба равно 1 см, то оно состоит примерно из 3 - 107 ионов!), проведем прямые через любую цепочку чередующихся ионов Na+ и С1- в том месте, где они расположены особенно близко друг к другу. Тогда при повороте решетки вокруг любой из прямых на 90° получаем решетку совершенно идентичную первоначальной.
    Существует много таких физических явлений, в которых атомная структура вещества не проявляется непосредственным образом. При изучении этих явлений вещество можно рассматривать как сплошную среду, отвлекаясь от его внутренней структуры. Таковы, например, тепловое расширение тел, их деформация под влиянием внешних сил, диэлектрическая проницаемость, оптические свойства и т. п. Свойства вещества как сплошной среды называют макроскопическими свойствами.
    Макроскопические свойства кристалла различны по разным направлениям в нем. Например, особенности прохождения света через кристалл зависят от направления луча; тепловое расширение кристалла происходит, вообще говоря, различно по разным направлениям; деформация кристалла зависит от ориентации внешних сил и т. п. Происхождение этой зависимости свойств от направления связано, конечно, со структурой кристалла. Так, например, растяжение кубического кристалла вдоль направления, параллельного ребрам кубических ячеек его решетки, будет происходить не так, как при растяжении вдоль диагонали этих ячеек, ибо энергия связи между атомами зависит от расстояния между ними.
    Зависимость физических свойств тела от направления называется анизотропией. Анизотропия является характерной особенностью кристаллов, и в этом отношении они принципиально отличаются от изотропных сред - жидкостей и газов, - свойства которых одинаковы по всем направлениям.
    Естественно, что кристалл выступает как однородная, непрерывная и анизотропная среда только по отношению к своим макроскопическим свойствам, но эти макроскопические свойства, в конце концов, определяются силами, действующими между структурными элементами пространственной решетки, а, следовательно, природой самих ионов, атомов или молекул, из которых построен кристалл. Этим же определяются и законы повторяемости структурных элементов пространственной решетки, ее симметрия. Это значит, что все физические свойства макроскопического кристалла связаны с его симметрией.
    Ван-дер-ваальсовские кристаллы. Самые простые из известных твердых тел – кристаллы инертных газов неона, аргона, криптона и ксенона. Электронная структура свободных атомов этих газов имеет конфигурацию так называемых замкнутых оболочек, отличающуюся исключительной устойчивостью. Например, неон имеет заполненную К-оболочку из двух электронов и заполненную L-оболочку из восьми электронов; эта конфигурация соответствует максимальному числу электронов в каждой оболочке, разрешенному правилами квантовой механики. На устойчивость конфигурации электронов в кристаллах инертных газов указывают высокие значения энергии ионизации, необходимой для удаления одного из внешних электронов. Такая устойчивость означает, что у атомов инертных газов нет валентных электронов в обычном смысле этого слова. Действительно, даже внешние электроны могут рассматриваться как электроны остова, сильно связанные с ядром. Поэтому электронная структура атомов в твердом теле остается практически такой же, как и у свободных атомов. Поскольку суммарный электрический заряд атомов равен нулю и все электроны сильно связаны с соответствующими ядрами, возникает вопрос, каким образом эти атомы вообще связываются в твердое тело? Дело в том, что между нейтральными атомами существуют слабые силы притяжения, обусловленные взаимодействием электрических диполей, которые индуцируются соседними атомами благодаря синхронизации движения своих электронов. Эти слабые и весьма чувствительные к различным факторам силы называются силами Ван-дер-Ваальса; ими и обусловлена связь между атомами и молекулами в большинстве органических кристаллов. Поскольку притяжение между атомами слабое, кристаллы инертных газов характеризуются малой энергией связи (т.е. энергией, необходимой для удаления атома из твердого тела), а также низкой температурой плавления. Ниже приведены численные значения этих величин для инертных газов в твердом состоянии.
  Неон Аргон Криптон Ксенон
Энергия ионизации, эВ 21,6 15,8 14,0 12,1
Энергия связи, эВ/атом 0,02 0,08 0,12 0,17
Температура плавления, К 24 84 117 161
 
    Ограниченный интервал температур, в котором существуют эти твердые тела, лишает их практического интереса. Однако они играют важную роль в фундаментальных исследованиях по теории образования кристаллов, динамике атомов в твердом теле, подвижности электронов, инжектированных в диэлектрики, и т.п. Поскольку атомы инертных газов имеют форму, близкую к сферической, силы Ван-дер-Ваальса между ними изотропны (т.е. одинаковы во всех направлениях). Поэтому неудивительно, что атомы инертных газов кристаллизуются в структуру, соответствующую самой плотной упаковке сфер, а именно в гранецентрированную кубическую структуру. Расстояние между соседними атомами возрастает с увеличением атомов, т.е. с увеличением числа электронов в них; для представленных выше элементов оно составляет 3,13, 3,76, 4,01 и 4,35A.
    Кристаллы инертных газов оказываются хорошими диэлектриками. Это можно объяснить тем, что все электроны в атомах сильно связаны со своими ядрами. Физические свойства таких твердых тел во многом определяются свойствами и электронной структурой атомов, из которых они построены.
    Ионные кристаллы. Идеальный ионный кристалл состоит из положительно и отрицательно заряженных сферических ионов. Этому представлению более всего соответствуют если не все, то по крайней мере некоторые щелочно-галоидные соединения, т.е. соли, образуемые одним из щелочных металлов (литий, натрий, калий, рубидий, цезий) и одним из галогенов (фтор, хлор, бром, иод). Имеются доказательства того, что кристаллы этих солей действительно образованы положительными ионами металлов и отрицательно заряженными ионами галогенов. Самое прямое из них – данные рентгеноструктурного анализа, на основе которых рассчитывается распределение электронного заряда (см. рис. 9 для случая NaCl).
    То, что подобные твердые тела состоят из ионов, а не атомов, можно объяснить следующим образом. Прежде всего все атомы щелочных металлов имеют один внешний валентный электрон, тогда как внешняя оболочка атомов галогенов содержит семь валентных электронов. При переходе валентного электрона от атома щелочного металла к атому галогена образуются два иона, каждый из которых обладает устойчивой электронной конфигурацией, характерной для атомов инертных газов. Еще более важен выигрыш в энергии, обусловленный кулоновским притяжением между положительными и отрицательными ионами. Рассмотрим в качестве примера хлорид натрия (NaCl). Чтобы оторвать внешний (валентный) электрон от атома Na, нужно затратить 5,14 эВ (энергию ионизации). Когда этот электрон присоединяется к атому Cl, получается выигрыш в энергии, равный 3,61 эВ (энергия сродства к электрону). Таким образом, энергия, необходимая для перехода валентного электрона от Na к Cl, равна (5,14 - 3,61) эВ = 1,53 эВ. Кулоновская же энергия притяжения между двумя возникшими ионами Na+ и Cl- при расстоянии между ними (в кристалле), равном 2,18 A, составляет 5,1 эВ. Эта величина с избытком компенсирует полную энергию перехода электрона и приводит к понижению полной энергии системы ионов по сравнению с аналогичной системой свободных атомов. В этом основная причина того, что щелочно-галоидные соединения состоят именно из ионов, а не атомов.
    Вычисления энергии ионных кристаллов на самом деле сложнее, чем это может показаться из проведенных выше рассуждений. Но по крайней мере для щелочно-галоидных кристаллов наблюдается хорошее согласие между теоретическим и экспериментальным значениями энергии связи. Ионные связи достаточно сильны, на что указывает, например, высокая температура плавления, равная 1074 K для NaCl.
    Благодаря высокой степени устойчивости электронной структуры ионные кристаллы попадают в разряд диэлектриков. Поскольку положительные и отрицательные ионы взаимодействуют с электромагнитными волнами, ионные кристаллы обнаруживают сильное оптическое поглощение в инфракрасной области спектра. (Частота осциллирующего внешнего электрического поля в этой области спектра близка к собственной частоте поперечных решеточных волн, в которых положительные и отрицательные ионы кристалла движутся во встречных направлениях.) В видимой области спектра частоты колебаний слишком велики, для того чтобы массивные ионы успевали реагировать на воздействие таких волн. Поэтому световые волны проходят через кристалл без взаимодействия, т.е. такие кристаллы прозрачны. При еще более высоких частотах – в ультрафиолетовой области спектра – кванты поля могут иметь достаточную энергию для возбуждения валентных электронов, обеспечивающего переход валентных электронов отрицательных ионов в незанятые состояния положительных ионов. Это приводит к сильному оптическому поглощению.
    Ковалентные кристаллы. Наиболее известные ковалентные кристаллы – это алмаз, кремний и германий. Каждый атом в таких кристаллах окружен четырьмя соседними атомами, расположенными в вершинах правильного тетраэдра. Свободные атомы каждого из указанных элементов имеют по четыре валентных электрона, а этого достаточно для образования четырех парных электронных связей (между данным атомом и четырьмя его ближайшими соседями). Таким образом, два электрона коллективизируются двумя атомами, образующими связь, и располагаются в пространстве вдоль линии, соединяющей атомы. Это почти такая же связь, как и между двумя атомами водорода в молекуле водорода H2. В алмазе эти связи очень сильны, и, поскольку они имеют строго определенное направление относительно друг друга, алмаз является чрезвычайно твердым материалом. Силу ковалентной связи электрона с кристаллом характеризует так называемая энергетическая щель – минимальная энергия, которую необходимо передать электрону, чтобы он мог свободно двигаться в кристалле и создавать электрический ток. Для алмаза, кремния и германия ширина этой щели составляет 5,4, 1,17 и 0,744 эВ соответственно. Поэтому алмаз является хорошим диэлектриком; энергия тепловых колебаний в нем при комнатной температуре слишком мала, чтобы освободить валентные электроны. В кремнии же и особенно в германии благодаря сравнительно малой ширине энергетической щели возможно тепловое возбуждение некоторого числа валентных электронов при комнатной температуре. Таким образом, они проводят ток, но поскольку их проводимость значительно меньше, чем у металлов, кремний и германий относятся к полупроводникам.
    Металлы. Как упоминалось выше, валентные электроны в ковалентных твердых телах коллективизированы соседними атомами и локализованы вдоль линий, соединяющих эти атомы. В металлах коллективизация электронов достигает максимума – все валентные электроны коллективизируются всеми ионными остовами. Идеальный металл можно рассматривать как состоящий из периодически расположенных ионных остовов, которые погружены в газ электронов проводимости, свободно движущихся между ионными остовами.
    Стабильность металла и величина его энергии связи определяются кулоновскими силами притяжения между положительными ионными остовами и отрицательно заряженным электронным газом. Подвижные электроны проводимости ответственны за высокую электро- и теплопроводность металлов.
    Такая модель металла со свободными электронами лучше всего подходит для щелочных металлов и менее пригодна для благородных металлов – меди, серебра и золота. В щелочных металлах ионные остовы занимают лишь малую долю полного объема (около 15%), тогда как в серебре и золоте соседние ионные остовы чуть ли не соприкасаются друг с другом.
    Различие между четырьмя типами твердых тел поясняется схемами, представленными на рис. 10. Атомы и ионные остовы с сильно связанными электронами в конфигурациях с замкнутыми оболочками показаны светлыми кружками. Пространственное распределение валентных электронов показано только для ковалентных кристаллов и металлов.
    Большинство твердых веществ занимает промежуточное положение между четырьмя «чистыми» типами связи. Например, существует непрерывный ряд твердых тел между чисто ионными и чисто ковалентными кристаллами. Поэтому в применении к таким непроводящим электрический ток материалам говорят о частично ионном или частично ковалентном характере связей. Дж. Филлипс предложил особенно успешный полуэмпирический подход к описанию существующих закономерностей в различных группах соединений на основе их диэлектрических свойств и ширины энергетических щелей. Интересно сравнить степени ионности связи в схеме Филлипса для соединений, составленных из элементов разных (или одной и той же) групп периодической системы: I и VII, II и VI, III и V, IV-IV, а также для элементов IV группы. Для некоторых соединений эта характеристика имеет следующие значения:  

    NaCl MgS GaAs SiC Si
    0,94 0,79 0,31 0,18 0
 
    Здесь виден постепенный переход от почти полностью ионного соединения NaCl к чисто ковалентному кристаллу кремния.
    Кристаллы с водородными связями. Рассмотренная выше классификация кристаллов основана на связях, создаваемых электронами. Другой тип химической связи возникает благодаря ионам водорода (протонам). Протон – это особый вид иона: у него вообще отсутствуют электроны, а потому он имеет чрезвычайно малые размеры. «Голый» протон способен связывать друг с другом два отрицательных иона, в частности отрицательные ионы фтора, кислорода и азота. Например, ион дифторида водорода HF2-, обладающий линейной структурой F-H+F-, обязан своей устойчивостью наличию протона, связывающего два отрицательных иона фтора. Водородные связи играют важную роль в молекулярной биологии (прежде всего в генетике), поскольку они участвуют в удержании двух цепей двойной спиральной структуры молекул ДНК. Эти связи существенны также в физике сегнетоэлектриков (например, дигидрофосфата калия KH2PO4) и в значительной мере ответственны за удивительные физические свойства воды и льда.  
 

     
 
 
 
 
 
 
 

    2. Упругие свойства твердых тел, плавление, кристаллизация.
    Всякое твердое тело имеет определенную форму и определенный объем. Если на тело будет действовать сила, она может изменить форму и объем тела. Изменение формы и объема тела под действием силы называется деформацией.
    Если наблюдать деформации твердых тел, то можно заметить, что после снятия деформирующего воздействия некоторые тела при некоторых условиях восстанавливают свою первоначальную плотность, а другие остаются в деформированном виде. Деформации, которые полностью исчезают с исчезновением деформирующего воздействия, называются упругими. Деформации, не исчезающие по снятии деформирующих сил, называют пластическими.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.