На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 16.03.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Задача 4

С помощью метода наименьших квадратов подобрать параметры a и b линейной функции y = a + bx, приближенно описывающей опытные данные из соответствующей таблицы. Изобразить в системе координат заданные точки и полученную прямую.

xi
0,0
0,2
0,4
0,6
0,8
1,0
yi
0,9
1,1
1,2
1,3
1,4
1,5

Решение

Система нормальных уравнений

в задаче

n = 6

Тогда

решая ее получаем .

y = 0,5714x + 0,9476

Задача 5

Найти неопределенный интеграл

Решение

Ответ:

Задача 6

Найти неопределенный интеграл

Решение

Ответ:

Задача 7

Найти неопределенный интеграл, применяя метод интегрирования по частям

Решение

Ответ:

Задача 8

Вычислить площадь, ограниченную заданными параболами

Решение

Точки пересечения по х: х = -1, х = 5.

Площадь фигуры найдем из выражения

Ответ:

Задача 9

Найти общее решение дифференциального уравнения первого порядка

Решение

Разделим переменные
Проинтегрируем
Ответ:
Задача 10

Найти частное решение линейного дифференциального уравнения первого порядка, удовлетворяющее начальному условию

Решение:
Запишем функцию y в виде произведения y = u * v. Тогда находим производную:
Подставим эти выражения в уравнение
Выберем v таким, чтобы
Проинтегрируем выражение
,
Найдем u
,
,
,
и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.