На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


задача Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.

Информация:

Тип работы: задача. Предмет: Математика. Добавлен: 21.12.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


ЗАДАЧА № 1

1.1 Найти значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а)
1.2 Определить стандартную ошибку предсказания являющейся мерой качества реальной зависимости величинами Y и х с помощью уравнения линейной регрессии.
1.3 Проверить значимость коэффициента регрессии при р=0,05
1.4 Определить выборочный коэффициент Браве-Пирсона. Проверить гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05.
X
1
2
3
4
5
6
7
8
9
10
Y
8.013
12.933
19.85
20.503
28.228
24.741
33.105
32.04
32.914
36.473
Линейная регрессия
Простая линейная регрессия позволяет найти линейную зависимость между одной входной и одной выходной переменными. Для этого определяется уравнение регрессии - это модель, отражающая зависимость значений Y, зависимой величины Y от значений х, независимой переменной х и генеральной совокупности, описывается уровнением:
где А0 - свободный член уравнения регрессии;
А1 - коэффициент уравнения регрессии
Затем строится соответствующая прямая, называемая линией регрессии. Коэффициенты А0 и А1, называемые также параметрами модели, выбираются таким образом, чтобы сумма квадратов отклонений точек, соответствующих реальным наблюдениям данных, от линии регрессии, была бы минимальной. Подбор коэффициентов производится по методу наименьших квадратов. Иными словами, простая линейная регрессия описывает линейную модель, которая наилучшим образом аппроксимирует зависимость между одной входной и одной выходной переменными.
Цели регрессионного анализа
· Определение наличия и характера (математического уравнения, описывающего зависимость) связи между переменными
· Определение степени детерминированности вариации критеральной переменной предикторами
· Предсказать значение зависимой переменной с помощью независимой
· Определить вклад независимых переменных в вариацию зависимой
1.1 Найдем значения коэффициента регрессии (А?) и сводного члена уравнения регрессии (А?)
a) Представление исходной информации в виде векторов
b) Определение суммы элементов векторов и произведений векторов:
c) Определение параметров уравнения регрессии
d) Свободный член уравнения регрессии А?
e) Коэффициент уравнения регрессии А?
f) Графическое изображение линии уравнения регрессии и точек кор-реляции
Определим параметры уравнения регрессии А? и А? с помощью встроенных функций системы MathCad

· intercept (X,Y) - коэффициент А? линейной регрессии;
· slope (X,Y) - коэффициент А? линейной регрессии;
· corr(X,Y) - коэффициент корреляции

1) Определение свободного члена уравнения регрессии А? с помощью встроенной функции intercept(X.Y)
2) Определение коэффициента уравнения регрессии А? с помощью встроенной функции slope(X.Y)
3) Определим коэффициент корреляции R с помощью встроенной функции corr(X,Y)
1.2 Определим стандартную ошибку предсказания являющейся мерой качества реальной зависимости величинами Y и х с помощью уравнения линейной регрессии.
Мерой качества приближенного описания реальной зависимости между величинами Y и х с помощью уравнения линейной регрессии является стандартное отклонение значений у от регрессионной прямой, вычисляемое по формуле:
SYX является мерой точности предсказания значений случайной величины Y по заданным значениям величины х, поэтому SYX называют также стандартной ошибкой предсказания.
Найдем стандартную ошибку предсказания для нашего примера:
1.3 Проверим значимость коэффициента регрессии при р=0,05

Если в результате проведенной проверки нет оснований сомневаться в адекватности линейной модели, то необходимо проверить гипотезу о том, что в действительности в генеральной совокупности отсутствует линейная регрессия, а то, что полученный коэффициент регрессии отличен от нуля объясняется только случайностью выборки.
Гипотеза Н0 проверяется с помощью стандартного t-критерия Стьюдента. Значение t-критерия определяется по формуле:


где А1 - абсолютная величина коэффициента регрессии,
SYX - стандартная ошибка предсказаний.
Если значения t>tp, то нулевая гипотеза отклоняется, и можно сделать вывод, что линейная регрессия значима на уровне значимости р. Зададимся уровнем значимости р=0,05. В противном случае гипотеза Н0 принимается
Оценим значимость коэффициента регрессии при уровне значимости р=0,05.
Подставим найденные ранее значения в формулу и определим значение t-критерия.
t0.05=2.306
Поскольку t>t0.05, то на уровне значимости 0,05 отклонением гипотезу Н0, т.е. коэффициент регрессии является статистически значимым.
1.4 Определим выборочный коэффициент Браве-Пирсона. Проверим гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05.

Коэффициент корреляции Браве-Пирсона (RXY) -- это параметри-ческий показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений.
где Xi, Yi - значения первой и второй выборок данных;
Xsr, Ysr - средние значения первой и второй выборок.
Проверим гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05
Поскольку t>t0.05, то на уровне значимости 0,05 отклонением гипотезу Н0, т.е. коэффициент регрессии является статистически значимым.
ЗАДАЧА 2

При уровне значимости р=0,05 методом дисперсионного анализа проверить эффективность воздействия рентгеновского облучения на темп размножения определенного вида бактерий по данным, приведенным по таблице, где представлен относительный уровень (в процентах) размножения облученных бактерий к необлученным.
Номер испытания
Дозы облучения F, 10? P
F1=1
F2=2
F3=3
F4=4
1
87
83
77
2
91
85
76
3
97
86
82
77
4
92
88
84
79
5
95
80
81
В процессе медико-биологических исследований часто возникает потребность оценить влияние на какой-нибудь результативный признак одного или нескольких факторов.
Одним из современных статических методов, которые дают возможность проводить специальный анализ эффективности влияния многих факторов, является дисперсионный анализ. С помощью этого метода оценивают также вероятность влияния каждого из рассматриваемых факторов, их комбинации и общей совокупности. Важным преимуществом дисперсионного анализа является возможность определения вероятных расхождений в небольших группах экспериментальных данных, когда какой-нибудь другой метод может дать не определенный ответ. Это связано с тем, что в других методах проводится сравнение изолированных групп. Объединение отдельных групп в дисперсионный комплекс дает возможность четче выявить наличие расхождений, потому что при таком объединении выявлению расхождений каждой группы содействуют все другие группы комплекса.
Смысл дисперсионного анализа заключается в сопоставлении между собой показателей варьирования результативных признаков, которое служит причиной действия постоянных и случайных факторов. В зависимости от числа факторов, которые учитываются при дисперсионном анализе, и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.