На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 01.05.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


16

Вариант 1

№ 1

Три стрелка делают по одному выстрелу по одной и той же цели. Вероятности поражения целей равны соответственно р1 = 0,9, р2 = 0,8, р3 = 0,7.

Найти вероятности того, что:

а) все три стрелка попадают в цель;

б) только один из них попадает в цель;

в) хотя бы один стрелок попадает в цель.

Обозначим события: А - все 3 стрелка попадают в цель; В - только один стрелок попадает в цель; С - хотя бы один стрелок попадает в цель.

Вероятности промахов равны соответственно: q1 = 0,1, q2 = 0,2, q3 = 0,3.

а) Р(А) = р1р2р3 = 0,9•0,8•0,7 = 0,504.

б) Р(В) = p1q2q3 + q1p2q3 + q1q2p3 = 0,9•0,2•0,3 + 0,1•0,8•0,3 + 0,1•0,2•0,7 = 0,092.

в) Событие - все три стрелка промахиваются. Тогда

Р(С) = 1 - Р() = 1 - 0,1•0,2•0,3 = 1 - 0,006 = 0,994.

№ 11

Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз

У нас n достаточно велику, р малу, л = np = 150 • 0,02 = 3 < 9, k = 5. Справедливо равенство Пуассона: . Таким образом,
№ 21

По
данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение у(Х).

хі
1
2
3
4
5
рі
0,05
0,18
0,23
0,41
0,13
Последовательно получаем:
5
М(Х) = ? хірі = 0,05 + 2•0,18 + 3•0,23 + 4•0,41 + 5•0,13 = 3,39.
i=1
5
D(X) = ? xiІpi - MІ = 0,05 + 2І•0,18 + 3І•0,23 + 4І•0,41 + 5І•0,13 - 3,39І = i=1
1,1579.
у(Х) = vD(X) = v1,1579 = 1,076.
№ 31

Случайная величина Х задана интегральной функцией

а) дифференциальную функцию f(x) (плотность вероятности);

б) математическое ожидание и дисперсию величины х;

в) вероятность того, что X примет значение, принадлежащее интервалу
;
г)
построить графики функций F(x) и f(x).
Последовательно получаем:
а) ;
в) Р(a < x < b) = F(b) - F(a) P= F(1) - F= - 0 = .
Графики функций поданы далее.

№ 41

Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (б; в) если известны математическое ожидание а и среднее квадратическое отклонение у. Данные: б = 2; в = 13; а = 10; у = 4.
Используем формулу Р(б < x < в) =
Имеем: Р(2 < x < 13) == Ф- Ф(-2).
Поскольку функция Лапласа есть нечетная, можем записать:
Ф- Ф(-2) = Ф+ Ф(2) = 0,2734 + 0,4772 = 0,7506.
№ 51
По данному статистическому распределению выборки
хі
4
5,8
7,6
9,4
11,2
13
14,8
16,6
mі
5
8
12
25
30
20
18
6
Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

Для решения задачи введём условную переменную
, где С - одно из значений хі, как правило, соответствующее наибольшему значению mі , а h - это шаг (у нас h = 1,8).
Пусть С = 11,2. Тогда .
Заполним таблицу:
xi
mi
xiґ
ximi
(xiґ)Іmi
4
5
- 4
- 20
80
5,8
8
- 3
- 24
72
7,6
12
- 2
- 24
48
9,4
25
- 1
- 25
25
11,2
30
0
0
0
13
20
1
20
20
14,8
18
2
36
72
16,6
6
3
18
54
? = 124
? = - 19
? = 371
Используя таблицу, найдём ;
D(xґ) = ?(xiґ)Іmi - (xiґ)І = - (- 0,1532)І = 2,9685.
Теперь перейдем к фактическим значениям х и D(x):
_
x = xґh + C = - 0,1532•1,8 + 11,2 = 10,9242; D(x) = D(xґ)•hІ = 2,9685•1,8І = 9,6178;
у(x) = vD(x) = v9,6178 = 3,1013.

№ 61

По данной корреляционной таблице найти выборочное уравнение регрессии.
у х
6
9
12
15
18
21
ny
5
4
2
6
15
5
23
28
25
18
44
5
67
35
1
8
4
13
45
4
2
6
nx
4
7
42
52
13
2
n = 120
Для упрощения расчетов введем условные переменные
u = , v = . Составим таблицу:
v u
- 3
- 2
- 1
0
1
2
nv
nuvuv
- 2
4 6
2 4

6
32
- 1
5 2
23 1

28
33
0
18 0
44 0
5 0

67
0
1
1 -1
8 0
4 1

13
3
2
4 2
2 4
6
16
nu
4
7
42
52
13
2
n = 120
? = 84
Последовательно получаем:
;
;
;
;
уuІ = - (u)І = 1,058 - (- 0,425)І = 0,878; уu = v0,878 = 0,937;
уvІ = - (v)І = 0,742 - (- 0,125)І = 0,726; уv = v0,726 = 0,8521;
По таблице, приведённой выше, получаем ?nuvuv = 84.
Находим выборочный коэффициент корреляции:
Далее последовательно находим:
x = u•h1 + C1 = - 0,425•3 + 15 = 13,725; y = v•h2 + C2 = - 0,125•10 + 25 = 23,75;
уx = уu•h1 = 0,937•3 = 2,811; уy = уv•h2 = 0,8521•10 = 8,521.
Уравнение регрессии в общем виде: Таким образом,
упрощая, окончательно получим искомое уравнение регрессии:
Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.
1) при х = 12 по таблице имеем
по уравнению:
ух=12 = 2,457•12 - 9,968 = 19,516; е1 = 19,762 - 19,516 = 0,246;
2) при х = 18 по таблице имеем
по уравнению:
ух=18 = 2,457•18 - 9,968 = 34,258; е2 = 34,258 - 34,231 = 0,027.
Отмечаем хорошее совпадение эмпирических и теоретических данных.


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.