На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Эволюция планеты земля

Информация:

Тип работы: контрольная работа. Добавлен: 11.08.2012. Сдан: 2011. Страниц: 17. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Вопрос  №1 Эволюция планеты  Земля, возникновение  жизни на земле. Первый глобальный кризис на Земле.          . 
           Перенесемся на 4 млрд лет назад. Атмосфера не содержит свободного кислорода, он находится только в составе окислов. Почти никаких звуков, кроме свиста ветра, шипения извергающейся с лавой воды и ударов метеоритов о поверхность Земли. Ни растений, ни животных, ни бактерий. Может быть, так выглядела Земля, когда на ней появилась жизнь? Хотя эта проблема издавна волнует многих исследователей, их мнения на этот счет сильно различаются. Об условиях на Земле того времени могли бы свидетельствовать горные породы, но они давно разрушились в результате геологических процессов и перемещений земной коры. 
В этой статье мы кратко расскажем о нескольких гипотезах возникновения жизни, отражающих современные научные представления. Как считает известный специалист в области проблемы возникновения жизни Стэнли Миллер, о возникновении жизни и начале ее эволюции можно говорить с того момента, как органические молекулы самоорганизовывались в структуры, которые смогли воспроизводить самих себя. Но это порождает другие вопросы: как возникли эти молекулы; почему они могли самовоспроизводиться и собираться в те структуры, которые дали начало живым организмам; какие нужны для этого условия? 
Согласно одной из гипотез жизнь началась в кусочке льда. Хотя многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима. При низкой температуре все химические соединения более стабильны и поэтому могут накапливаться в больших количествах, чем при высокой температуре. Занесенные из космоса осколки метеоритов, выбросы из гидротермальных источников и химические реакции, происходящие при электрических разрядах в атмосфере, были источниками аммиака и таких органических соединений, как формальдегид и цианид. Попадая в воду Мирового океана, они замерзали вместе с ней. В ледяной толще молекулы органических веществ тесно сближались и вступали во взаимодействия, которые приводили к образованию глицина и других аминокислот. Океан был покрыт льдом, который защищал вновь образовавшиеся соединения от разрушения под действием ультрафиолетового излучения. Этот ледяной мир мог растаять, например, при падении на планету огромного метеорита (рис. 1).

 
Рис. 1.                   . 
Океан был покрыт льдом, который служил защитой от сильного ультрафиолетового излучения. В ледяной толще молекулы органических соединений могли тесно сближаться и взаимодействовать друг с другом с образованием новых, более сложных соединений
Чарлз Дарвин и его современники полагали, что жизнь могла возникнуть в водоеме. Этой точки зрения многие ученые придерживаются и в настоящее время. В замкнутом и сравнительно небольшом водоеме органические вещества, приносимые впадающими в него водами, могли накапливаться в необходимых количествах. Затем эти соединения еще больше концентрировались на внутренних поверхностях слоистых минералов, которые могли быть катализаторами реакций. Например, две молекулы фосфатальдегида, встретившиеся на поверхности минерала, реагировали между собой с образованием фосфорилированной углеводной молекулы – возможного предшественника рибонуклеиновой кислоты (рис. 2).
 
Рис. 2.                 
Вода, а вместе с ней различные химические соединения, поступающие из ледников, вулканов, гейзеров и осколков метеоритов, скапливаются в неглубоких водоемах
А может  быть, жизнь возникла в районах  вулканической деятельности? Непосредственно  после образования Земля представляла собой огнедышащий шар магмы. При извержениях вулканов и с  газами, высвобождавшимися из расплавленной  магмы, на земную поверхность выносились разнообразные химические вещества, необходимые для синтеза органических молекул. Так, молекулы угарного газа, оказавшись на поверхности минерала пирита, обладающего каталитическими  свойствами, могли реагировать с  соединениями, имевшими метильные группы, и образовывать уксусную кислоту, из которой затем синтезировались другие органические соединения (рис. 3).
 
Рис. 3.            . 
В местах вулканической активности при извержениях, выделении и выбросах газов из коры и магмы на земную поверхность попадали жизненно важные вещества, которые вступали в химические реакции, давая начало органическим соединениям
     Впервые получить органические молекулы –  аминокислоты – в лабораторных условиях, моделирующих те, что были на первобытной  Земле, удалось американскому ученому  Стэнли Миллеру в 1952 г. Тогда эти эксперименты стали сенсацией, и их автор получил всемирную известность. В настоящее время он продолжает заниматься исследованиями в области предбиотической (до возникновения жизни) химии в Калифорнийском университете. Установка, на которой был осуществлен первый эксперимент, представляла собой систему колб, в одной из которых можно было получить мощный электрический разряд при напряжении 100 000 В. 
Миллер заполнил эту колбу природными газами – метаном, водородом и аммиаком, которые присутствовали в атмосфере первобытной Земли. В колбе, расположенной ниже, было небольшое количество воды, имитирующей океан. Электрический разряд по своей силе приближался к молнии, и Миллер ожидал, что под его действием образуются химические соединения, которые, попав затем в воду, прореагируют друг с другом и образуют более сложные молекулы.       
. 
Результат превзошел все ожидания. Выключив вечером установку и вернувшись на следующее утро, Миллер обнаружил, что вода в колбе приобрела желтоватую окраску. То, что образовалось, оказалось бульоном из аминокислот – строительных блоков белков. Таким образом этот эксперимент показал, как легко могли образоваться первичные ингредиенты живого. Всего-то и нужны были – смесь газов, маленький океан и небольшая молния. 
           Другие ученые склонны считать, что древняя атмосфера Земли отличалась от той, которую моделировал Миллер, и состояла, скорее всего, из углекислого газа и азота. Используя эту газовую смесь и экспериментальную установку Миллера, химики попытались получить органические соединения. Однако их концентрация в воде была такой ничтожной, как если бы растворили каплю пищевой краски в плавательном бассейне. Естественно, трудно себе представить, как могла возникнуть жизнь в таком разбавленном растворе.      
. 
Если действительно вклад земных процессов в создание запасов первичного органического вещества был столь незначителен, то откуда оно вообще взялось? Может быть, из космоса? Астероиды, кометы, метеориты и даже частицы межпланетной пыли могли нести на себе органические соединения, включая аминокислоты. Эти внеземные объекты могли обеспечить попадание в первичный океан или небольшой водоем достаточного для зарождения жизни количества органических соединений. 
Последовательность и временной интервал событий, начиная от образования первичного органического вещества и кончая появлением жизни как таковой, остается и, наверное, навсегда останется загадкой, волнующей многих исследователей, равно как и вопрос, что. собственно, считать жизнью. 
В настоящее время существует несколько научных определений жизни, но все они не точны. Одни из них настолько широки, что под них попадают такие неживые объекты, как огонь или кристаллы минералов. Другие – слишком узки, и в соответствии с ними мулы, не дающие потомства, не признаются живыми.           
. 
Одно из наиболее удачных определяет жизнь как самоподдерживающуюся химическую систему, способную вести себя в соответствии с законами дарвиновской эволюции. Это значит, что, во-первых, группа живых особей должна производить подобных себе потомков, которые наследуют признаки родителей. Во-вторых, в поколениях потомков должны проявляться последствия мутаций – генетических изменений, которые наследуются последующими поколениями и обуславливают популяционную изменчивость. И в-третьих, необходимо, чтобы действовала система естественного отбора, в результате которого одни особи получают преимущество перед другими и выживают в изменившихся условиях, давая потомство. 
Какие же элементы системы были необходимы, чтобы у нее появились характеристики живого организма? Большое число биохимиков и молекулярных биологов считают, что необходимыми свойствами обладали молекулы РНК. РНК – рибонуклеиновые кислоты – это особенные молекулы. Одни из них могут реплицироваться, мутировать, таким образом передавая информацию, и, следовательно, они могли участвовать в естественном отборе. Правда, они не способны сами катализировать процесс репликации, хотя ученые надеются, что в недалеком будущем будет найден фрагмент РНК с такой функцией. Другие молекулы РНК задействованы в “считывании” генетической информации и передаче ее на рибосомы, где происходит синтез белковых молекул, в котором принимают участие молекулы РНК третьего типа.          
. 
Таким образом самая примитивная живая система могла быть представлена молекулами РНК, удваивающимися, подвергающимися мутациям и подверженными естественному отбору. В ходе эволюции на основе РНК возникли специализированные молекулы ДНК – хранители генетической информации – и не менее специализированные молекулы белка, взявшие на себя функции катализаторов синтеза всех известных в настоящее время биологических молекул.          
. 
В некий момент времени “живая система” из ДНК, РНК и белка нашла приют внутри мешочка, образованного липидной мембраной, и эта более защищенная от внешних воздействий структура послужила прототипом самых первых клеток, давших начало трем основным ветвям жизни, которые представлены в современном мире бактериями, археями и эукариотами. Что касается даты и последовательности появления таких первичных клеток, то это остается загадкой. Кроме того, по простым вероятностным оценкам для эволюционного перехода от органических молекул к первым организмам не хватает времени – первые простейшие организмы появились слишком внезапно. 
В течение многих лет ученые полагали, что жизнь вряд ли могла возникнуть и развиваться в тот период, когда Земля постоянно подвергалась столкновениям с большими кометами и метеоритами, а завершился этот период примерно 3,8 млрд лет тому назад. Однако недавно в самых древних на Земле осадочных породах, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет по крайней мере 3,86 млрд лет. Значит, первые формы жизни могли возникнуть за миллионы лет до того, как прекратилась бомбардировка нашей планеты крупными космическими телами. Но тогда возможен и совсем другой сценарий (рис. 4).

 
Рис. 4.  
Органическое вещество попадало на Землю из космоса вместе с метеоритами и другими внеземными объектами, бомбардировавшими планету в течение сотен миллионов лет с момента ее образования. Ныне столкновение с метеоритом – событие довольно редкое, но и сейчас из космоса вместе с межпланетным материалом на Землю продолжают поступать точно такие же соединения, как и на заре жизни
     Падавшие  на Землю космические объекты  могли сыграть центральную роль в возникновении жизни на нашей  планете, так как, по мнению ряда исследователей, клетки, подобные бактериям, могли возникнуть на другой планете и затем уже  попасть на Землю вместе с астероидами. Одно из свидетельств в пользу теории внеземного происхождения жизни  было обнаружено внутри метеорита, по форме напоминающего картофелину  и названного ALH84001. Первоначально  этот метеорит был частичкой марсианской  коры, которая затем была выброшена  в космос в результате взрыва при  столкновении огромного астероида  с поверхностью Марса, происшедшего около 16 млн лет назад. А 13 тыс. лет назад после длительного путешествия в пределах Солнечной системы этот осколок марсианской породы в виде метеорита приземлился в Антарктике, где и был недавно обнаружен. При детальном исследовании метеорита внутри него были обнаружены палочковидные структуры, напоминающие по форме окаменелые бактерии, что дало повод для бурных научных споров о возможности жизни в глубине марсианской коры. Разрешить эти споры удастся не ранее 2005 г., когда Национальное управление по аэронавтике и космическим исследованиям США осуществит программу полета на Марс межпланетного корабля для отбора проб марсианской коры и доставки образцов на Землю. И если ученым удастся доказать, что микроорганизмы когда-то населяли Марс, то о внеземном возникновении жизни и о возможности занесения жизни из Космоса можно будет говорить с большей долей уверенности (рис. 5).
Наше  происхождение от микробов.
Что мы унаследовали от древних форм жизни? Приведенное ниже сравнение одноклеточных  организмов с клетками человека выявляет много  черт сходства.
1. Половое размножение 
Две специализированные репродуктивные клетки водорослей – гаметы, – спариваясь, образуют клетку, несущую генетический материал от обоих родителей. Это удивительно напоминает оплодотворение яйцеклетки человека сперматозоидом.
 
 
2.Реснички 
Тоненькие реснички на поверхности одноклеточной парамеции колышутся подобно крошечным веслам и обеспечивают ей движение в поисках пищи. Похожие реснички устилают дыхательные пути человека, выделяют слизь и задерживают чужеродные частицы.
 
 
3. Захват других  клеток 
Амеба поглощает пищу, окружая ее псевдоподией, которая образуется выдвижением и удлинением части клетки. В организме животного или человека амебовидные кровяные клетки похожим образом выдвигают псевдоподию, чтобы поглотить опасную бактерию. Этот процесс назван фагоцитозом.
  
 
4.Митохондрии 
Первые эукариотные клетки возникли, когда амеба захватила прокариотные клетки аэробных бактерий, которые превратились в митохондрии. И хотя бактерии и митохондрии клетки (поджелудочной железы) не слишком похожи, у них одна функция – вырабатывать энергию в процессе окисления пищи.
  5.Жгутики 
Длинный жгутик сперматозоида человека позволяет ему двигаться с большой скоростью. Бактерии и простейшие эукариоты тоже имеют жгутики с похожим внутренним строением. Он состоит из пары микротрубочек, окруженной девятью другими.

Э
в
о
л
ю
ц
и
я
 
ж
и
з
н
и
 
н
а
З
е
м
л
е
:
о
т
п
р
о
с
т
о
г
о

к
 
с
л
о
ж
н
о
м
у
Самые первые и наиболее примитивные млекопитающие  появились в далекую геологическую  эпоху, известную как мезозойская  эра, по-видимому, в ее начальный  период, называемый триасовым, ок. 200 млн. лет тому назад. В течение более 100 млн. лет эти очень маленькие существа не играли сколь-либо значительной роли; преобладающими животными на громадном отрезке времени были динозавры и другие рептилии. Вероятно, ко времени завершения мелового периода (ок. 75 млн. лет тому назад) на Земле появились наши отдаленные предки - первые приматы. По-видимому, это были мелкие зверьки, питавшиеся травой и плодами и приспособившиеся к древесному образу жизни. Затем мезозойская эра подошла к концу, динозавры вымерли, и началась кайнозойская эра. На протяжении первых двух ее эпох - палеоцена и эоцена, т.е. ок. 40-60 млн. лет тому назад, к семейству Paromomyidae, паромомиид (приматов) добавилось еще два крупных семейства приматов, вероятно древних родственников полуобезьян - лемуров и долгопятов. Точнее говоря, считается, что появление лемуров и долгопятов произошло в конце эоцена. Эта ранняя стадия эволюции приматов характеризуется тремя важными изменениями: мозг стал значительно крупнее, морда сильно уменьшилась, а передние конечности становились все более приспособленными для хватательных движений, причем вместо когтей появились плоские ногти. В позднем эоцене обозначилась также линия, ведущая к обезьянам, человекообразным обезьянам и человеку; ее начало связывают с появлением семейства Omomyidae, происходящего от наиболее древних приматов - паромомиид. Формируясь, линия высших приматов, или антропоидов, приобрела некоторые особенности, в частности значительно увеличилась подвижность передних конечностей и возросла зависимость от зрения. Следующая геологическая эпоха - олигоцен, условно датируемая периодом примерно от 38 до 25 млн. лет тому назад, богата ископаемыми находками, но эти находки трудно связать с эволюцией человека. В это время линия высших приматов начинает разделяться на ветви, идущие в нескольких направлениях: к цебоидам (Ceboidea), или обезьянам Нового света; к церкопитекоидам (Cercopithecoidea), или обезьянам Старого света (мартышкообразным); и к гоминоидам (Hominoidea), т.е. к надсемейству, включающему современного человека, горилл, шимпанзе, орангутанов и гиббонов. Одна из находок эпохи олигоцена вызвала большие споры в научной среде. Это был парапитек (Parapithecus), найденный в Файюме (Египет). Многие антропологи полагают, что существо такого типа было древним предком современных гоминоидов, другие же полностью исключают саму принадлежность парапитека к приматам. Трудность проистекает из ограниченности имеющихся остатков этого существа - только нижняя челюсть - и из сложности определения его зубной системы (типа и числа зубов). По мнению некоторых антропологов, парапитек родствен амфипитеку (Amphipithecus), обнаруженному в Бирме, хотя его остатки могут датироваться эпохой эоцена. Вкратце, важность этой интерпретации состоит в следующем: если она правильна, то и человекообразные обезьяны, и человек могут восходить напрямую к первым приматам, минуя стадию церкопитекоидов (обезьян Старого света), поскольку у амфипитека и парапитека обнаруживаются антропоидные характеристики на тот момент, когда еще не произошло полного утверждения церкопитекоидов; если же нет, то скорее всего такая стадия существовала. Вовлеченной в подобного же рода дискуссии оказалась и более поздняя находка, известная как ореопитек (Oreopithecus), сделанная более полувека назад, но ставшая центром новой полемики в 1958, когда были обнаружены новые ископаемые остатки. К сожалению, эта спорная находка дошла до нас в очень плохом состоянии, спрессованной в слое лигнита. Как полагают, ореопитек существовал в нижнем плиоцене ок. 10 млн. лет тому назад. На основании этого нового свидетельства эксперты по анатомии обезьян считают, что находка не принадлежит к церкопитекоидному типу. Если данное мнение подтвердится и ореопитек будет вполне надежно связан с более поздними гоминоидами, это станет дополнительным свидетельством в пользу того, что линия гоминоидов начала обособляться, минуя стадию подобия мартышкообразных. Обращаясь вновь к эпохе олигоцена, упомянем ряд похожих находок из Европы и Африки. В их числе: проплиопитек (Propliopithecus) и прохилобат (Prohylobates) - оба из Египта, плиопитек (Pliopithecus) - из Франции, и лимнопитек (Limnopithecus) - из Кении. По мнению большинства специалистов, эти ископаемые не относятся к предкам человека, но ведут более или менее прямо к современным гиббонам. Однако, как полагают, они были схожи в важных элементах с каким-то другим современным им приматом - предположительно предком крупных человекообразных обезьян и человека. Эпоха олигоцена длилась ок. 13 млн. лет, и у нас нет возможности датировать ископаемые остатки точнее. Тем не менее очевидно, что олигоцен был периодом лучевого адаптивного расхождения антропоидов. Из следующей эпохи миоцена до нас дошла чрезвычайно интересная и, по-видимому, связанная с предыдущей группа ископаемых остатков. Это дриопитеки (Dryopithecinae) -широко распространенная группа существ, по размерам сравнимых с шимпанзе и живших в разных частях Африки, Европы и Азии. По некоторым признакам, например по жевательной поверхности моляров, дриопитеков можно расположить на линии происхождения гоминид или, точнее, вблизи той точки, от которой началось расхождение человека и обезьян. Одно из этих ископаемых существ - рамапитек (Ramapithecus), найденный в Индии, - считается некоторыми учеными самым ранним из гоминид. Его возраст оценивают в 9-12 млн. лет. Представление о рамапитеке как первом из гоминид было сильно поколеблено, когда позднее в Пакистане были обнаружены остатки сходного существа, названного Sivapithecus indicus. Фактически ряд антропологов в настоящее время использует название Sivapithecus для всех остатков Ramapithecus. Изучение остатков сивапитека показало, что он ближе к орангутану, чем к африканским видам человекообразных обезьян. (По существу, это подтверждает данные биомолекулярных исследований, также свидетельствующие о том, что орангутан - более отдаленный родственник человека, чем горилла и шимпанзе, и его отделение в ходе эволюции от группы "человек - шимпанзе - горилла" произошло в период от 10 до 11 млн. лет назад.)              . 

А
в
с
т
р
а
л
о
п
и
т
е
к.
 До недавнего времени самым  большим белым пятном в ископаемой летописи эволюции человека оставался  плиоцен - эпоха длительностью ок. 6 млн. лет, завершившаяся ок. 2 млн. лет назад. Для изучающих эволюцию человека плиоцен особенно важен, поскольку он предшествует непосредственно эпохе плейстоцена, в котором были впервые обнаружены ясные и неоспоримые ископаемые остатки гоминид, известных как австралопитековые (Australopithecinae). Эти тонкокостные существа с небольшим мозгом являются самыми ранними из известных настоящих гоминид. Первая из находок австралопитековых, состоящая из части черепа ребенка, была сделана в 1924 в известковом карьере близ Таунса в Бечуаналенде (ныне Ботсвана) южноафриканским анатомом Р.Дартом. Дарт определил находку как новую форму гоминид и назвал ее Australopithecus africanus. Другие формы, названные парантропом (Paranthopus) и плезиантропом (Plesianthropus), были найдены позже и также в Африке. В 1959 в ущелье Олдовай в нынешней Танзании Луис Лики обнаружил одного из самых древних представителей этой группы - зинджантропа (Zinjanthropus). К настоящему времени найдены остатки или значительные фрагменты скелета более ста особей австралопитековых. Они особенно интересны тем, что раскрывают относительные темпы эволюции различных частей тела гоминид. Австралопитековые имели рост в среднем 122-152 см и были прямоходящими, что следует из формы их длинных костей ног и рук и подтверждается формой таза и характером сочленения черепа с позвоночником. Но объем их черепной коробки был не больше, чем у современных шимпанзе и горилл, - ок. 500 куб. см. По современным представлениям, увеличение размеров черепной коробки и мозга произошло несколько позже начала прямохождения, увеличения подвижности рук, гибкости кисти и развития зубов. Находки последних десятилетий проливают свет на происхождение австралопитековых. В 1974 в Эфиопии, в районе Афар, Д.Джохансон обнаружил при раскопках примитивный вид этих человекообезьян, первая представительница которого (обнаружены были кости женской особи) получила уменьшительное имя Люси. Научное название этого вида - A.afarensis, его возраст оценивается в 3-4 млн. лет, и большинство специалистов считает, что он был общим предком двух линий, разошедшихся в ходе эволюции: австралопитековых и гоминид. Линия австралопитековых, включавшая такие виды, как A.africanus, A.ethiopicus, A.boisei и A.robustus, угасла немногим более миллиона лет назад. Линия гоминид, к которой принадлежали исчезнувшие виды Homo habilis и H.erectus, привела к современному человеку - H.sapiens. Хотя A.afarensis находится в точке разветвления двух названных линий, он недостаточно похож на человекообразных обезьян, чтобы быть единственным связующим звеном между австралопитековыми и той древней "человекообразной обезьяной", от которой он произошел в ходе эволюции. "Обезьяна-прародитель" в действительности являлась не совсем человекообразной обезьяной, а скорее общим предком как человекообразных обезьян, так и человека, и жила (что следует из результатов биомолекулярных исследований) 4-6 млн. лет тому назад. Следовательно, должны были существовать одна или несколько форм, которые еще более примитивны, чем A.afarensis. В декабре 1992 такая примитивная форма была обнаружена в Эфиопии, неподалеку от места находки Люси, т.е. A.afarensis. Исследование этого примитивного вида, названного A.ramidus (в публикации 1994), показало, что его возраст 4,4 млн. лет; он имел по всем признакам значительное сходство с шимпанзе, но обладал и некоторым человекоподобием, например относительно коротким основанием черепа и клыками той же формы, что и у гоминид. Неожиданным оказалось то, что A.ramidus был лесным жителем. Это удивительно, поскольку считается, что предок человека жил в районах открытой саванны, и именно условия открытой саванны стали важным, если не ключевым, фактором развития в ходе эволюции вертикального положения тела, т.е. хождения на двух ногах. Был ли A.ramidus существом двуногим, остается неизвестным. 

Homo

habilis
(
ч
е
л
о
в
е
к
 
у
м
е
л
ы
й
).
 В 1961 в ущелье Олдовай в Восточной Африке Джонатан Лики нашел остатки первого представителя Homo habilis. В дальнейшем в Восточной Африке были сделаны и другие находки, подтверждающие существование этого вида. Датирование ископаемых остатков определяет их возраст примерно в 2 млн. лет, т.е. H.habilis сосуществовал с австралопитековыми. Некоторые антропологи рассматривают его как высокоразвитый вид австралопитековых, но большинство признает его старейшим из рода Homo. H.habilis имел мозг объемом ок. 750 куб. см. - значительно больший, чем мозг австралопитеков, - и более "человеческую" зубо-челюстную систему. Считается, что к этому типу древнего человека относится первое свидетельство использования каменных орудий труда (хотя, по некоторым данным, галечные "праорудия" иногда обнаруживаются и вместе с остатками австралопитековых). Есть веские основания полагать, что H.habilis был непосредственным предшественником следующей ступени эволюции человека: Homo erectus . 

Homo

erectus
(
ч
е
л
о
в
е
к
 
п
р
я
м
о
х
о
д
я
щ
и
й
).
 Первой находкой H. erectus был знаменитый яванский человек, ранее классифицировавшийся как питекантроп (Pithecanthropus erectus); он был найден в 1891 датским анатомом Э.Дюбуа, который предсказал, что древний человек должен был существовать на о.Ява, и, отправившись туда, блестяще подтвердил свою догадку. Позже, в конце 1920-х годов, целая группа ископаемых остатков была обнаружена в местечке Чу-Ку-Тьен близ Пекина в Северном Китае. Эту группу назвали Sinanthropus pekinensis, пекинский человек. Сегодня эта находка вместе с другими экземплярами подобного типа из того же региона считается принадлежащей к виду H.erectus и переименована в H.erectus pekinensis. В течение 1930-х годов были найдены ископаемые экземпляры того же общего типа (названные Pithecanthropus robustus) и на о.Ява. Две другие важные находками на о.Ява, определенно принадлежащие к H.erectus, - это обладающий очень крупными челюстями Meganthropus paleojavanicus и представленный молодой особью (что усложняет анализ данных) Pithecanthropus modjokertensis. Кроме того, к H.erectus относятся еще две находки: одна, известная как Atlanthropus из Тернифина, сделана в Оране (Алжир), другая - в 1962 в Кении. Существует еще несколько других экземпляров, классифицируемых как H.erectus, включая т.н. гейдельбергского человека, чья массивная челюсть была найдена в Мауэре (Германия), и человека Vertesszollos из Венгрии. Таким образом, география распространения H.erectus была чрезвычайно обширной. По оценкам, существование H.erectus датируется периодом от 1,5 до 0,3 млн. лет назад. Представители H.erectus по росту были вполне соразмерны современному человеку. Их тело отличалось полностью вертикальным положением и мощной костной системой, служившей, судя по точкам крепления мышц, основой крепкой мускулатуры. Учитывая отставание развития черепа в процессе эволюции гоминид, неудивительно, что наиболее примитивные характеристики этих ископаемых связаны со строением головы. Объем черепной коробки относительно мал, но необходимо отметить, что при усредненном по всем экземплярам H.erectus объеме в 1000 куб. см. он почти укладывается в параметры современных норм, составляющих в среднем 1300 куб. см. Данные о строении мозга H.erectus ограниченны; известно, однако, что у них был низкий лоб и не было, предположительно, развитых лобных долей мозга, с которыми мы связываем человеческий интеллект. К примитивным характеристикам черепа H.erectus относятся также отсутствие подбородка и сильно развитое надбровье. Вместе с тем зубо-челюстная система претерпела прогрессивные изменения: моляры стали мельче, челюсти уменьшились и отступили назад, уже не выдаваясь так, как у более обезьяноподобных австралопитеков. В результате наиболее развитые формы H.erectus, такие как пекинский человек, имели слегка выступающие носы и походили на H.sapiens. Одна из наиболее интересных проблем, связанных с H.erectus, касается их культуры. Существуют ясные свидетельства применения ими орудий. К тому же они создали, как представляется, два отличных друг от друга способа их изготовления в двух разных частях света. Известно также, что по меньшей мере в Китае H.erectus пользовался огнем. Весьма вероятно, что пекинский человек овладел искусством речи, тогда как вопрос о том, могли ли говорить его более древние предшественники, остается спорным. Другим проявлениям культуры может оказаться одна явно неестественная особенность всех черепов H.erectus из Чу-Ку-Тьена: основание каждого черепа продавлена, а мозг представляется сознательно изъятым. Обычно это интерпретируют как признак каннибализма, однако часть специалистов считает, что это может означать существование культа голов, т.е. некой формы религиозного поклонения, включая сохранение и почитание черепов.          

Homo

sapiens
(
ч
е
л
о
в
е
к
 
р
а
з
у
м
н
ы
й
).
 Как это ни странно, ход эволюции от H.erectus до H.sapiens, т.е. до стадии человека современного типа, так же трудно удовлетворительно документировать, как и первоначальный этап ответвления линии гоминид. Однако в данном случае дело усложняется наличием нескольких претендентов на искомое промежуточное положение. По мнению ряда антропологов, той ступенью, которая вела непосредственно к H.sapiens, был неандерталец (Homo neanderthalensis, или, как принято сегодня, Homo sapiens neanderthalensis). Неандертальцы появились не позже чем 150 тыс. лет назад, и разные их типы процветали вплоть до периода ок. 40-35 тыс. лет тому назад, отмеченного несомненным присутствием хорошо сформированного H.sapiens (H.sapiens sapiens). Эта эпоха соответствовала наступлению в Европе Вурмского оледенения, т.е. ледникового периода, наиболее близкого к современности. Другие ученые не связывают происхождение человека современного типа с неандертальцем, указывая, в частности, на то, что морфологическое строение лица и черепа последнего было слишком примитивно, чтобы успеть эволюционировать до форм H.sapiens. Неандерталоидов обычно представляют себе коренастыми, волосатыми, звероподобными людьми на согнутых ногах, с выдающейся вперед головой на короткой шее, создающей впечатление, что они еще не вполне достигли прямохождения. Картины и реконструкции в глине обычно подчеркивают их обволошенность и неоправданную примитивность. Такой образ неандертальца является большим искажением. Во-первых, мы не знаем, были ли неандертальцы обволошенными или нет. Во-вторых, все они были полностью прямоходящими. Что же касается свидетельств о наклонном положении тела, то, вероятно, они получены при изучении особей, страдавших артритом. Одна из наиболее удивительных особенностей всей неандертальской серии находок состоит в том, что наименее современные из них по виду были наиболее поздними по времени. Это - т.н. классический неандертальский тип, череп которого характеризуется низким лбом, тяжелым надбровьем, срезанным подбородком, выдающейся вперед областью рта и длинной, низкой черепной коробкой. Тем не менее объем их мозга был больше, чем у современного человека. Они вполне определенно обладали культурой: есть свидетельства погребальных культов и, возможно, культов животных, поскольку вместе с ископаемыми остатками классических неандертальцев находят кости животных. Одно время считалось, что неандертальцы классического типа обитали только в южной и западной Европе, а их происхождение связано с наступлением ледника, поставившего их в условия генетической изоляции и климатического отбора. Однако на сегодня явно сходные формы обнаружены в некоторых регионах Африки и Ближнего Востока и, возможно, в Индонезии. Столь широкое распространение классического неандертальца заставляет отказаться от указанной теории. На данный момент не существует материальных доказательств какого-либо постепенного морфологического превращения классического типа неандертальца в современный тип человека за исключением находок, сделанных в пещере Схул в Израиле. Черепа, обнаруженные в этой пещере, значительно отличаются друг от друга, некоторые из них обладают признаками, ставящими их в промежуточное положение между двумя человеческими типами. По мнению некоторых специалистов, это является доказательством эволюционного изменения неандертальца до человека современного типа, тогда как другие считают, что данный феномен - результат смешанных браков между представителями двух типов людей, полагая тем самым, что H.sapiens эволюционировал независимо. Поддерживают такое объяснение свидетельства того, что еще 200-300 тыс. лет тому назад, т.е. до появления классического неандертальца, существовал тип человека, относящийся скорее всего к раннему H.sapiens, а не к "прогрессивному" неандертальцу. Речь идет о хорошо известных находках - фрагментах черепа, найденного в Свонскоме (Англия), и более полной черепной коробке из Штайнхайма (Германия). Разногласия в вопросе о "неандертальском этапе" в эволюции человека отчасти связаны с тем, что не всегда учитываются два обстоятельства. Во-первых, возможно существование более примитивных типов любого эволюционирующего организма в относительно неизменном виде в то самое время, когда другие ветви этого же вида подвергаются различным эволюционным модификациям. Во-вторых, возможны миграции, связанные со смещением климатических зон. Такие смещения повторялись в плейстоцене по мере наступления и отступления ледников, и человек мог следовать за сдвигами климатической зоны. Таким образом, при рассмотрении длительных периодов времени нужно учитывать, что популяции, занимающие данный ареал в определенный момент, не обязательно являются потомками популяций, обитавших там в более ранний период. Не исключено, что ранние H.sapiens могли мигрировать из тех регионов, где они появились, а затем вернуться на прежние места через много тысяч лет, успев претерпеть эволюционные изменения. Когда полностью сформировавшийся H.sapiens появился в Европе 35-40 тыс. лет тому назад, в более теплый период последнего оледенения, он несомненно вытеснил классического неандертальца, который занимал тот же регион в течение 100 тыс. лет. Теперь нельзя точно определить, сдвинулась ли популяция неандертальца севернее, следуя за отступлением привычной для нее климатической зоны, или же смешалась с вторгшимися на ее территорию H.sapiens.

В
о
п
р
о
с
 

2
П
р
и
ч
и
н
ы
 
в
о
з
н
и
к
н
о
в
е
н
и
я
 
к
и
с
л
о
т
н
ы
х
 
д
о
ж
д
е
й.
П
о
с
л
е
д
с
т
в
и
я
 
в
л
и
я
н
и
я
 
н
а
б
и
о
с
ф
е
р
у.
В круговороте  загрязняющих веществ существуют два  этапа кислотных дождей 
     1. Вымывание осадков или влажная сегментация; 
     2. Выпадения осадков или сухая сегментация. 
Совокупность этих процессов является кислотной сегментацией


2.1
В
ы
м
ы
в
а
н
и
е
 
к
и
с
л
о
т
н
ы
х
 
в
е
щ
е
с
т
в
 
и
з
 
а
т
м
о
с
ф
е
р
ы
.
 

        Вымывание происходит во время образования облаков и осадков. Одним из условий образования облаков является перенасыщенность. Это означает, что воздух содержит больше водяного пара, чем он может принять при заданной температуре, сохраняя равновесие. При понижении температуры способность воздуха накапливать воду в виде пара уменьшается. Тогда начинается конденсация водяного пара, которая происходит до тех пор, пока не прекратится перенасыщенность. Однако при обычных атмосферных условиях водяной пар способен конденсироваться только при относительной влажности 400-500 % . Относительная влажность в атмосфере лишь в редких случаях может превысить 100,5 % . При такой перенасыщенности капельки облаков могут возникать только на частицах аэрозоля ѕ так называемых конденсационных ядрах. Этими ядрами часто являются хорошо растворимые в воде соединения серы и азота..              . 
        После начала образования капель элементы облака продолжают поглощать аэрозольные частицы и молекулы газа. Поэтому воду облака или его кристаллы можно рассматривать как раствор атмосферных элементов. 
        Элементы облака не могут безгранично увеличиваться. Возникающая под действием гравитации седиментация, которая растет с увеличением размера капель, рано или поздно приводит к выпадению капель облаков с высоты нескольких сотен или тысяч метров. Во время выпадения эти капли промывают слой атмосферы между облаками и поверхностью земли. В это время поглощаются новые молекулы газа и новые аэрозольные частицы захватываются падающей каплей. Таким образом, достигающая поверхности земли вода вопреки всеобщему мнению никоим образом не является дистиллированной водой. Более того, во многих случаях растворенные в воде осадков вещества могут служить важным и иногда даже единственным источником восстановления запасов этих веществ в различных сферах.


2.
2
С
у
х
и
е
 
о
с
а
д
к
и
.
              
.
 
        Хотя эта форма седиментации существенно отличается от влажной седиментации, конечный результат их действительно идентичен ѕ попадание кислотных атмосферных микроэлементов, соединений серы и азота на поверхность Земли. Известно достаточно много разнообразных кислотных микроэлементов, однако содержание большинства из них настолько мало, что их роль в кислотной седиментации можно не принимать во внимание. 
        Эти кислотные вещества могут выпадать на поверхность двумя способами. Один из них -   турбулентная диффузия, под действием которой в осадок выпадают вещества, находящиеся в газообразном состоянии. Турбулентное диффузионное движение в первую очередь возникает из-за того, что движение струящегося воздуха над почвой и другой поверхностью является неравномерным вследствие трения. Обычно в вертикальном от поверхности направлении ощущается увеличение скорости ветра и горизонтальное движение воздуха вызывает турбулентность. Таким путем компоненты воздуха достигают Земли, и наиболее активные кислотные вещества легко взаимодействуют с поверхностью.     . 

2.3
В
л
и
я
н
и
е
 
к
и
с
л
о
т
н
ы
х
 
о
с
а
д
к
о
в
 
н
а
 
п
р
и
р
о
д
у
 
и
 
ч
е
л
о
в
е
к
а
.
 
        Кислотные осадки   оказывают вредное воздействие не только на отдельные предмет или живые существа, но и на их совокупность. В природе и в окружающей среде образовались сообщества растений и животных, между которыми, как и между живыми и неживыми организмами, существует постоянный обмен веществ. Эти сообщества, которые можно также называть экологической системой, обычно состоят из четырех групп: неживые объекты, живые организмы, потребители и разрушители. 
          Влияние кислотности в первую очередь сказывается на состоянии пресных вод и лесов. Обычно воздействия на сообщества бывают косвенными, т.е. опасность представляют не сами кислотные осадки, а протекающие под их влиянием процессы (например, высвобождение алюминия). В определенных объектах (почва, вода, ил и т.д.) в зависимости от кислотности могут возрасти концентрации тяжелых металлов, так как в результате изменения рН изменяется их растворимость. Через питьевую воду и животную пищу, например, через рыбу в организм человека также могут попасть токсичные металлы. Если под действием кислотности изменяются строение почвы, ее биология и химия, то это может привести к гибели растений (например, отдельных деревьев). Обычно эти косвенные воздействия не являются местными и могут влиять на расстоянии нескольких сотен километров от источника загрязнения.         . 

2.
4

К
о
с
в
е
н
н
ы
е
 
в
о
з
д
е
й
с
т
в
и
я
.
       
.
 
        Воздействия на леса и пашни. Кислотные осадки воздействуют либо косвенным путем; через почву и корневую систему, либо непосредственно (главным образом на листву). Подкисление почвы определяется различными факторами. В отличие от вод почва обладает способностью к выравниванию кислотности среды, т.е. до определенной степени она сопротивляется усилению кислотности. Попавшие в почву кислоты нейтрализуются, что ведет к сохранению существенного закисления. Однако наряду с естественными процессами на почвы в лесах и на пашнях воздействуют антропогенные факторы.            . 
        Химическая стабильность, способность к выравниванию, склонность почв к закислению изменчивы и зависят от качества подпочвенных пород, генетического типа почвы, способа ее обработки (возделывания), а также от наличия поблизости значительного источника загрязнений. Кроме того, способность почвы сопротивляться влиянию кислотности зависит от химических и физических свойств подстилающих слоев. 
        Косвенные воздействия проявляются по-разному. Например, осадки, содержащие соединения азота, некоторое время способствуют росту деревьев, так как снабжают почву питательными веществами. Однако в результате постоянного потребления азота лес им перенасыщается. Тогда увеличивается вымывание нитрата, что ведет к закислению почвы. 
        Во время выпадения осадков вода, стекающая с листьев, содержит больше серы, калия, магния, кальция и меньше нитрата и аммиака, чем вода осадков, что приводит к увеличению кислотности почвы. В результате этого возрастают потери необходимых для растений кальция, магния, калия, что ведет к повреждению деревьев.        
. 
        Поступающие в почву ионы водорода могут замещаться находящимися в почве катионами, в результате чего происходят либо выщелачивание кальция, магния и калия, либо их седиментация в обезвоженной форме. Далее возрастает также мобильность токсичных тяжелых металлов (марганец, медь, кадмий и др.) в почвах с низкими значениями рН. 
        Растворимость тяжелых металлов также сильно зависит от рН. Растворенные и вследствие этого легко поглощаемые растениями тяжелые металлы являются ядами для растений и могут привести к их гибели. Широко известно, что алюминий, растворенный в сильнокислой среде, ядовит для живущих в почве организмов. Во многих почвах, например, в северных умеренных и бореальных лесных зонах, наблюдается поглощение более высоких концентраций алюминия по сравнению с концентрациями щелочных катионов. Хотя многие виды растений в состоянии выдержать это соотношение, однако при выпадении значительных количеств кислотных осадков отношение алюминий/кальций в почвенных водах настолько возрастает, что ослабляется рост корней и создается опасность для существования деревьев.            
. 
Происходящие в составе почвы изменения могут преобразовать состав микроорганизмов в почве, воздействовать на их активность и тем самым повлиять на процессы разложения и минерализации, а также на связывание азота и внутреннее закисление.           
. 
        Так, например, гибель лесов в Средней и Западной Европе произошла главным образом под влиянием косвенных воздействий. Почти полностью погибли леса на площади в несколько сотен тысяч гектаров. 
        Дальнейшую озабоченность вызывает то, что в результате гибели наиболее чувствительных к закислению существ (микроорганизмы почвы, грибы, дубы) в структуре материального и энергетического баланса живых сообществ могут произойти неблагоприятные изменения, и в конечном итоге сам человек также пострадает из-за происходящих при этом необратимых процессов. 
        Закисление пресных вод. Собственно говоря, закисление прёсных вод - это потеря ими способности к нейтрализации. Закисление вызывают сильные кислоты, главным образом серная и азотная. На протяжении длительного периода более важную роль играют сульфаты, но во время эпизодических явлений (например, таяние снега) сульфаты и нитраты действуют совместно. На значительных территориях при повышении определенных значений кислотности осадков поверхностные воды оказываются кислыми. Если почва теряет способность нейтрализовать кислоты, то значение рН может снизиться на 1, 5, а в крайних случаях — даже на 2 или на 3. Частично закисление происходит непосредственно под действием осадков, но в большей мере - за счет веществ, смываемых с территории водного бассейна. 

        Процесс закисления поверхностных вод состоит из трех фаз.
1. Убыль  ионов гидрокарбоната, т.е. уменьшение  способности к нейтрализации при неизменяющемся значении рН.
2. Уменьшение  рН при уменьшении количества ионов гидрокарбоната. Значение рН тогда падает ниже 5, 5. Наиболее чувствительные виды живых организмов начинают погибать уже при рН = 6, 5.
3. При  рН = 4, 5 кислотность раствора стабилизируется. В этих условиях кислотность раствора регулируется реакцией гидролиза соединений алюминия. В такой среде способны жить только немногие виды насекомых, растительный и животный планктон, а также белые водоросли. 
        Многие виды животных и растений начинают гибнуть уже при зачениях рН < 6. При рН < 5 не обеспечиваются условия для нормальной жизни. 
        Гибель живых существ помимо действия сильноядовитого иона
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.