На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Решение системы линейных уравнений двумя способами: по формулам Крамера и методом Гаусса. Решение задачи на нахождение производных, пользуясь правилами и формулами дифференцирования. Исследование заданных функций методами дифференциального исчисления.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 16.03.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Задача 1

Решить систему линейных уравнений двумя способами: по формулам Крамера и методом Гаусса

Решение:
1) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Крамера
Определитель системы не равен нулю. Найдем вспомогательные определители 1, 2, 3, если они не равны нулю, то решений нет, если равны, то решений бесконечное множество
Система 3 линейных уравнений с 3 неизвестными, определитель которой отличен от нуля, всегда совместна и имеет единственное решение, вычисляемое по формулам:
Ответ: получили решение:
2) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Гаусса
Составим расширенную матрицу системы


Примем первую строку за направляющую, а элемент а11 = 1 - за направляющий. С помощью направляющей строки получим нули в первом столбце.


Матрице соответствует множество решений системы линейных уравнений
Ответ: получили решение:
Задача 2

Даны координаты вершин треугольника АВС
Найти:
1) длину стороны АВ;
2) уравнения сторон АВ и ВС и их угловые коэффициенты;
3) внутренний угол при вершине В в радианах с точностью до 0,01
4) уравнение медианы АЕ;
5) уравнение и длину высоты CD;
6) уравнение прямой, проходящей через точку Е параллельно стороне АВ и точку М ее пересечения с высотой CD;
7) уравнение окружности с центром в точке Е, проходящей через вершину В
Построить заданный треугольник и все линии в системе координат.
А(1; -1), В(4; 3). С(5; 1).
Решение
1) Расстояние между точками А(х1; у1) и В(х2; у2) определяется по формуле
воспользовавшись которой находим длину стороны АВ;
2) уравнения сторон АВ и ВС и их угловые коэффициенты;
Уравнение прямой, проходящей через две заданные точки плоскости А(х1; у1) и В(х2; у2) имеет вид
Подставляя в (2) координаты точек А и В, получаем уравнение стороны АВ:
Угловой коэффициент kАВ прямой АВ найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b.
У нас , то есть откуда
Аналогично получим уравнение прямой ВС и найдем ее угловой коэффициент.
Подставляя в (2) координаты точек В и С, получаем уравнение стороны ВС:
Угловой коэффициент kВС прямой ВС найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b.
У нас , то есть
3) внутренний угол при вершине В в радианах с точностью до 0,01
Для нахождения внутреннего угла нашего треугольника воспользуемся формулой:
Отметим, что порядок вычисления разности угловых коэффициентов, стоящих в числителе этой дроби, зависит от взаимного расположения прямых АВ и ВС.
Подставив ранее вычисленные значения kВС и kАВ в (3), находим:
Теперь, воспользовавшись таблицами инженерным микрокалькулятором, получаем В 1,11 рад.
4) уравнение медианы АЕ;
Для составления уравнения медианы АЕ найдем сначала координаты точки Е, которая лежит на середине отрезка ВС
Подставив в уравнение (2) координаты точек А и Е, получаем уравнение медианы:
5) уравнение и длину высоты CD;
Для составления уравнения высоты CD воспользуемся уравнением прямой, проходящей через заданную точку М(х0; у0) с заданным угловым коэффициентом k, которое имеет вид
и условием перпендикулярности прямых АВ и CD, которое выражается соотношением kABkCD = -1, откуда kCD = -1/kAB = - 3/4
Подставив в (4) вместо k значение kСD = -3/4, а вместо x0, y0 ответствующие координаты точки С, получим уравнение высоты CD
Для вычисления длины высоты СD воспользуемся формулой отыскания расстояния d от заданной точки М(х0; у0) до заданной прямой с уравнением Ax + By + С = 0 , которая имеет вид:
Подставив в (5) вместо х0; у0 координаты точки С, а вместо А, В, С коэффициенты уравнения прямой АВ, получаем
6) уравнение прямой, проходящей через точку Е параллельно стороне АВ и точку М ее пересечения с высотой CD;
Так как искомая прямая EF параллельна прямой АВ, то kEF = kAB = 4/3. Подставив в уравнение (4) вместо х0; у0 координаты точки Е, а вместо k значение kEF получаем уравнение прямой EF'.
Для отыскания координат точки М решаем совместно уравнения прямых EF и CD.
Таким образом, М(5,48; 0,64).
7) уравнение окружности с центром в точке Е, проходящей через вершину В
Поскольку окружность имеет центр в точке Е(4,5; 2) и проходит через вершину В(4; 3), то ее радиус
Каноническое уравнение окружности радиуса R с центром в точке М0(х0; у0) имеет вид
Имеем
Треугольник АВС, высота СD, медиана AE, прямая EF , точка M и окружность пост и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.