Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Преобразование энергии в биосфере. Круговорот веществ и потоков энергии

Информация:

Тип работы: реферат. Добавлен: 13.08.2012. Сдан: 2011. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Департамент образования Тверской области
ГОУ СПО «Лихославльское  педагогическое училище» 
 
 
 
 
 
 
 

Тема: Преобразование энергии в биосфере.
  Круговорот веществ и потоков
  энергии. 
 
 

               

                                                 
                                
                                  Подготовила: Поспелова И.Е.
                                                           
                  
                             
 
 

г. Лихославль
2008 г.
Содержание. 
 

Введение……………………………………………………………………..3
1.Большой и  малый круговороты веществ……………………………...…4
2. Круговорот  веществ в экосистемах……………………………………...5
3. Роль организмов  в круговороте веществ………………………………..8
4.Круговорот  углерода в биосфере…………………………………………9
5. Круговорот  азота в биосфере……………………………………………11
6.Круговорот  фосфора в биосфере………………………………………...13
7.Поток энергии  в биосфере…………………………………………...…...16
Приложение…………………………………………………………….……19 Список литературы……………………………………………………..…...20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение. 

     Оболочка  Земли, в пределах которой существует жизнь, называется биосферой.
     Биосфера  состоит из живого, или биотического, и неживого, или абиотического, компонентов. Биотический компонент – это  вся совокупность живых организмов. Абиотический компонент – сочетание  энергии, воды, определенных химических элементов и других неорганических условий, в которых существуют живые организмы.
       Жизнь в биосфере зависит от  потока энергии и круговорота  веществ между биотическим и  абиотическим компонентами. Круговороты  веществ называются биогеохимическими циклами. Существование этих циклов обеспечивается энергией Солнца. Земля получает от Солнца около 1,3?1024 калорий в год. Около 40% этой энергии излучается обратно в космос; 15% поглощается атмосферой, почвой и водой; остальная энергия – это видимый свет, первичный источник энергии для всей жизни на Земле.
       Фотосинтез, хемосинтез, дыхание и брожение – основные процессы, благодаря которым поток энергии проходит через организмы. Первые два процесса обеспечивают синтез органических веществ за счет энергии света (фотосинтез) и окисления неорганических веществ (хемосинтез). В ходе дыхания и брожения органические вещества расщепляются, а заключенная в них энергия используется живыми организмами, но в конечном итоге переходит в тепло.  
 
 
 
 
 
 

Большой и малый круговороты веществ. 

       Академик В.Р. Вильямс писал, что единственный способ придать чему-то конечному свойства бесконечного – это заставить конечное вращаться по замкнутой кривой, т. е. вовлечь его в круговорот.
     Все вещества на планете Земля находятся  в процессе биохимического круговорота. Выделяют два основных круговорота: большой (геологический) и малый (биотический).
     Большой круговорот длится миллионы лет. Горные породы разрушаются, выветриваются  и потоками вод сносятся в Мировой  океан, где образуют мощные морские напластования. Часть химических соединений растворяется в воде или потребляется биоценозом. Крупные медленные геоктонические изменения, процессы, связанные с опусканием материков и поднятием морского дна, перемещение морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.
     Малый круговорот, являясь частью большого, происходит на уровне биогеоценоза и заключается в том, что питательные вещества почвы, воды, воздуха аккумулируются в растениях, расходуются на создание их массы и жизненные процессы в них. Продукты распада органического вещества под воздействием бактерий вновь разлагаются до минеральных компонентов, доступных растениям, и вовлекаются ими в поток вещества.
     Возврат химических веществ из неорганической среды через среду с использованием солнечной энергии и химических реакций называется биохимическим циклом. 
 
 
 
 

Круговорот  веществ в экосистемах. 

      По  Р. Риклефсу (1979) экосистему можно представить  в виде пяти блоков (три активных, два добавочных), через которые проходят различные вещества (Приложение 1).
      Три активных блока составляют обменный фонд элементов:
      живые организмы;
      мертвый органический детрит;
      доступные неорганические вещества.
    Два добавочных блока составляют резервный фонд элементов:
      косвенно доступные неорганические вещества;
      осаждающиеся органические вещества.
     Между активными блоками идет быстрый  обмен элементами. Обмен между  добавочными блоками и остальной частью экосистемы замедлен. Например, углерод из косвенно доступных осадочных органических форм может превращаться при сгорании этой органической массы или при выветривании в доступный для растений углекислый газ.
     Циркуляцию  биогенных элементов в экосистеме называют биогеохимическим циклом. Этот термин был введен в обиход В.И. Вернадским.
     Все биогеохимические циклы взаимосвязаны в природе и в совокупности формируют устойчивую структуру биосферы в целом. Замкнутость нормальных биогеохимических циклов неполная – и это очень важное свойство. Именно оно обусловило биогенное накопление кислорода и азота в атмосфере Земли, а также различных химических элементов и их соединений в литосфере. Вместе с тем доля вещества, выходящего из биосферного цикла (длительностью от десятков и сотен до нескольких тысяч лет), в геологический цикл (длительностью в миллионы лет), в год относительно невелика. Лишь громадное время истории развития биосферы (около 4 млрд. лет) позволило осуществить подобные биогенные накопления элементов в атмосфере и литосфере. Так, например, ежегодный сброс углерода из биогеохимического цикла наземных экосистем в геологический цикл (в отложениях) составляет около 130 т., т.е. всего лишь примерно 10-8 % от современных запасов углерода, находящихся в биосферном обращении. В палеозое за счет неполной обратимости цикла углерода накопились мощные запасы отложений – известняки, уголь, нефть, битумы и пр., т.е. примерно за 600 млн. лет 1016 – 1017 т.
     В каждом биогеохимическом цикле (т.е. для  каждого отдельного элемента) можно  выделить два фонда (обменный и резервный).
     Резервный фонд – большая масса медленно движущихся веществ, содержащих данный элемент, в основном в составе  абиотического компонента. Фонд размещен за пределами живых организмов во внешней среде.
     Обменный (подвижный) фонд – меньший , но более активный. Для него характерен быстрый обмен между организмами и их непосредственным окружением.
     Резервный фонд иногда называют недоступным, а обменный циркулирующий фонд – доступным, хотя между ними существует постоянный медленный обмен.
     Среди биогеохимических циклов выделяют циклы двух типов: газообразных и осадочных веществ. Такое деление – проявление склонности химических элементов образовывать соединения того или иного типа в условиях Земли. Так, углерод, азот и кислород находятся в циклах преимущественно в виде летучих соединений, тогда как фосфор, железо и кальций сосредоточены в негазообразных веществах. Нарушения в циклах газообразных веществ могут быстро устраняться за счет наличия крупных атмосферных или океанических (либо тех и других) подвижных фондов. Циклы газообразных веществ с их громадными атмосферными фондами можно считать в глобальном масштабе «хорошо забуференными», так как их способность возвращаться к исходному состоянию велика.
     Самоконтроль  осадочных циклов затруднен –  они легче нарушаются в результате местных пертурбаций, так как в этих циклах основная масса вещества сосредоточена в малоактивном резервном фонде. Явление «забуференности» здесь не выражено.
     Циклы функционируют под действием  биологических и геологических  факторов (отсюда и их название). Существование биогеохимических циклов создает возможность для саморегуляции системы, что придает экосистеме устойчивость – постоянство состава (в %) различных элементов в ней (гомеостаз).
     Механизмы, обеспечивающие восстановление равновесия в круговороте, возвращение элементов в круговорот, во многих случаях основаны на биологических процессах. Поэтому человек чаще всего не в силах поправить положение дел, если по его вине нарушено равновесие в цикле.
     В связи с хозяйственной деятельностью человечества и вовлечением в биосферный поток техногенных продуктов этой деятельности возникли проблемы, обусловленные нарушением природных биогеохимических циклов. Циклы некоторых элементов (например, азота, серы, фосфора, калия, тяжелых металлов) превратились в настоящее время в природно-антропогенные, характеризующиеся значительной незамкнутостью. Некоторые же соединения и материалы, созданные человеком (например, многие пластмассы), вообще не способны включаться в природные и природно-антропогенные циклы, так как не перерабатываются в экосистемах, загрязняя их и являясь абсолютно чуждыми живому веществами.
     Усилия  по охране природы должны быть направлены в конечном счете на то, чтобы  превратить ациклические (незамкнутые) процессы в циклические. Целью общества в этом направлении должно стать содействие «возвращению веществ в круговорот!» (Ю.Одум). 
 

Роль  организмов в круговороте  веществ. 

     В круговороте веществ участвуют  три группы организмов.
     Продуценты (производители) – автотрофные организмы  и зеленые растения, которые, используя солнечную энергию, создают первичную продукцию живого вещества. Они потребляют углекислый газ, воду, соли и выделяют кислород. К этой группе принадлежат некоторые бактерии хемосептики, способные создавать органическое вещество.
     Консументы (потребители) – гетеротрофные организмы, питающиеся за счет автотрофных и друг друга. Они подразделяются на: консументы 1-го порядка – животные, питающиеся растениями, потребляющие кислород и выделяющие углекислый газ; консументы 2-го порядка – хищники и паразиты растительных организмов; консументы 3-го и 4-го порядка – свехпаразиты. Всего в цепи питания существует не более 5 звеньев.
     Редуценты (восстановители) – организмы, питающиеся организмами, бактериями и грибками. Здесь особенно велика роль микроорганизмов, до конца разрушающих органические остатки, превращающие их в конечные продукты: минеральные соли, углекислый газ, воду, простейшие органические вещества, поступающие в почву и вновь потребляемые растениями. 
 
 
 
 
 
 
 
 
 

Круговорот  углерода в биосфере. 

     Самый интенсивный биогеохимический цикл – круговорот углерода. В природе  углерод существует в двух основных формах – в карбонатах (известняках) и углекислом газе.
     Основная  масса аккумулирована в карбонатах на дне океана (1016 т), в кристаллических породах (1016 т), каменном угле и нефти (1016 т) и участвует в большом цикле круговорота. Основное звено большого круговорота углерода – взаимосвязь процессов фотосинтеза и аэробного дыхания.
     Другое  звено большого цикла круговорота  углерода представляет собой анаэробное дыхание (без доступа кислорода); различные виды анаэробных бактерий преобразуют органические соединения в метан и другие вещества (например, в болотных экосистемах, на свалках отходов).
     В малом цикле круговорота участвует  углерод, содержащийся в растительных тканях (около 1011 т) и тканях животных (около 109 т).
     Как известно, органические вещества построены  на основе атомов углерода. Именно специфические  особенности углеродных атомов (способность  образовывать простые и кратные  связи, соединяться друг с другом в длинные цепи и различные по величине циклы и пр.) вывели углерод на первое место по значимости для жизни.
     Круговорот  углерода осуществляется благодаря  четко отлаженному в ходе эволюции механизму функционирования двух фундаментальных процессов, о которых уже упоминалось – фотосинтез и клеточного дыхания.
     Солнечная энергия в форме электромагнитного  излучения используется биосферой  при фотосинтезе. Последний представляет собой весьма сложный с химической точки зрения процесс, который могут осуществлять лишь те организмы, в клетках которых работают уникальные молекулы хлорофилла.
     В процессе фотосинтеза электромагнитная энергия Солнца переходит в энергию  химических связей органических соединений, прежде всего углеводов (СН2О)n.
     Ежегодный прирост биомассы в результате фотосинтеза на планете составляет примерно 200 млрд. т.
     Клеточное дыхание – противоположный фотосинтезу  процесс, в котором происходит расщепление  синтезированных из СО2 и Н2О углеводов. Цель его – извлечь энергию из молекул углеводов (путем окисления), перевести ее в форму АТФ и далее использовать на различные энергетические нужды клетки. Выделяемый при фотосинтезе О2 все организмы (и животные-гетеротрофы, и растения-автотрофы) используют для окисления (СН2О)n. Таким образом, и фотосинтез, и дыхание взаимосвязаны в едином потоке веществ в биосфере. Вещества (изначально это СО2, Н2О и О2) могут совершать круговорот сколь угодно долго, вовлекаюсь попеременно то в фотосинтез, то в дыхание. С химической точки зрения, если вещества в этих круговоротах постоянно трансформируются, как бы обмениваясь атомами и перестраиваясь, то сами атомы элементов (например, углерода) никаких изменений не претерпевают. 
 
 
 
 
 
 
 
 
 
 

    Круговорот  азота в биосфере. 

    Цикл  азота служит примером сложного, но одновременно самого идеального круговорота газообразных веществ, способного к быстрой саморегуляции.
    Азот  наиболее распространен на Земле  в форме газообразного N2 атмосферы. Он возникает в результате реакции окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов:   4NH3 + 3O2 > 2N2 + 6H2O.
       И хотя азот – важнейший  компонент белков и нуклеиновых  кислот (генетического материала  живых организмов), растения не  могут непосредственнее брать  его из атмосферы. Они способны усваивать лишь связанный с кислородом или водородом азот, т.е. переведенный в другие химические формы – аммиак NH3, ионы аммония NH4+ или нитрат-ионы
NO3-.
      Вмешательство живых существ в круговорот азота  подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии – фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются в атмосфере и в результате электрических разрядов во время гроз.
     Самые активные потребители азота –  бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3- ) и ионы аммония (NH4+ ), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д.
     Процесс связывания атмосферного азота некоторыми свободноживущими (например, род Azotobakter) и симбиотическими (например, род Rhizobium) бактериями-азотфиксаторами называют биологической фиксацией азота. Каждый год таким путем на Землю переносится примерно 17,5 • 1010 кг азота. Один квадратный метр поля, засеянного бобовыми (например, соей), обеспечивает фиксацию 10 – 30 г азота в год. Фермент нитрогеназа, «обслуживающая» у бактерий фиксацию N2, зависит в своей активности от присутствия микроэлемента молибдена.
      Азот  проходит по всей пищевой сети и в виде детрита (мертвого органического вещества) и мочевины (NH2)2CO попадает в конечном итоге к редуцентам. Часть редуцентов способна переводить этот азот в ионы аммония, которые вновь используют растения.
      Одним из важнейших процессов в цикле азота является восстановление нитрат-ионов до молекулярного азота, осуществляемое почвенными анаэробными бактериями – денитрификаторами (например, представителями рода Pseudomonas): 5[СН2О] + 4NO3- + 4H+ > 2N2 + 5CO2 + 7H2O,где [СН2О] обозначает органические вещества. Эта реакция денитрификации, замыкающая цикл азота, показывает, как молекулярный азот возвращается в атмосферу. Денитрификация – главная причина потерь азота в земледелии, когда из вносимых человеком удобрений значительная часть (до половины!) связанного азота улетучивается. 

  
 
 
 
 
 
 

    Круговорот  фосфора в биосфере. 

    Цикл  фосфора – пример более простого осадочного цикла с менее совершенной  регуляцией. Два элемента (азот и  фосфор) часто являются очень важными  факторами в водных экосистемах, где они ограничивают и контролируют численность организмов.
    Фосфор  – один из основных компонентов живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК), клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ), жиров, костей и зубов. Круговорот фосфора, как и других биогенных элементов, совершается по большому и малому циклам.
    Главным резервуаром фосфора (в отличие  от азота) служит не атмосфера, а горные породы прошлых геологических эпох. Запасы фосфора, доступные живым существам, полностью сосредоточены в литосфере. Основные источники неорганического фосфора – изверженные или осадочные породы. В земной коре содержание фосфора не превышает 1%. Из пород земной коры неорганический фосфор вовлекается в циркуляцию континентальными водами.
    К растениям фосфор попадает главным  образом в виде фосфатов. Соединения фосфора растворимы лишь в кислых растворах и в бескислородных средах и именно в таком виде пригодны для усвоения растениями. Он поглощается растениями, которые при его участии синтезируют различные органические соединения и таким образом включаются в трофические цепи. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где снова подвергаются воздействию микроорганизмов и превращаются в минеральные формы, употребляемые зелёными растениями.
      В экосистему океана фосфор приносится текучими водами, что способствует развитию фитопланктона и живых организмов. 
В наземных системах круговорот фосфора проходит в оптимальных естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это связано с постоянным оседанием (седиментацией) органических веществ. Осевший на небольшой глубине органический фосфор возвращается в круговорот. Фосфаты, отложенные на больших морских глубинах, не участвуют в малом круговороте. Однако тектонические движения способствуют подъёму осадочных пород к поверхности.

    Таким образом, фосфор медленно перемещается из фосфатных месторождений на суше и мелководных океанических осадков к живым организмам и обратно.
    Незначительные  количества фосфора возвращаются из воды на сушу благодаря рыболовству, а также с экскрементами морских  птиц. (Раньше последний процесс  играл солидную роль в цикле фосфора  – залежи гуано на побережьях Южной  Америки). Однако в целом поток фосфора идет в одном направлении - из наземных горных пород на дно моря.
    Деятельность  человека ведет к усиленной потере фосфора на суше, что делает его круговорот еще менее замкнутым. По данным известного американского эколога Дж. Хатчинсона, вылов морской рыбы (60000т ежегодно в пересчете на элементарный фосфор) не компенсирует в настоящее время смыва и выключения из круговорота того фосфора, который добывается человеком на удобрения (1 - 2 млн.т фосфорсодержащих пород в год).
    Важность  сбалансированного круговорота фосфора сильно возрастет в будущем, так как из всех макроэлементов Р – один из самых дефицитных (в доступных резервуарах на поверхности Земли). Поэтому во многих экосистемах Р выступает как лимитирующий (сдерживающий жизнь) фактор.
    Фосфор  заслуживает особо пристального внимания в связи с тем, что роль его в истории развития жизни на Земле трудно переоценить. Будучи относительно редким элементом (9 • 10-2 % от массы всей земной коры ), фосфор тем не менее лежит в основе уникальной системы снабжения живых организмов энергией. Для того чтобы на древней Земле затеплилась жизнь, потребовалась особая форма энергии, поддерживающая эту жизнь, - энергия фосфатных (или, как их называют иначе, фосфоангидридных ) Р – О – Р – связей. Простейшим представителем таких «энергонесущих» молекул является пирофосфат.При гидролизе пирофосфата высвобождается энергия (более 29 кДж/моль), что значительно больше, чем если бы гидролизу подверглась любая другая молекула, не содержащая Р – О – Р –связей.
    Для организмов роль главного источника энергии играет другое соединение, имеющее фосфоангидридные связи, - аденозинтрифосфорная кислота – АТФ.
    Многие  ферменты (белки-катализаторы биохимических реакций) используют энергию АТФ. С помощью АТФ клетка движется, вырабатывает теплоту, избавляется от отходов, синтезирует новые вещества и пр.
    В молекуле АТФ есть две высокоэнергетические (макроэргические)
 Р  –О – Р –связей. 
Разрыв  их (например, при гидролизе) освобождает значительное количество энергии не менее 29 кДж/моль.
     Рассматривая  круговорот фосфора в масштабе биосферы за сравнительно короткий период, можно  сделать вывод, что он полностью  не замкнут. Запасы фосфора на земле  малы. Поэтому считают, что фосфор – основной фактор, лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор – главный регулятор всех других биогеохимических циклов, это – наиболее слабое звено в жизненной цепи, которая обеспечивает существование человека.  
 
 
 
 
 
 

     Поток энергии в биосфере. 

     В противоположность веществу энергия  не подчиняется закону цикличности. Для нормальной жизни и клетки, и отдельного организма, и экосистемы Солнце должно непрерывно поставлять на Землю новые и новые порции энергии.
     Поток энергии в биосфере – процессы передачи и использования энергии  в различных компонентах биосферы. Общее число живых организмов в каждом биоценозе, скорость их развития и воспроизводства зависят, в конечном счете, от количества энергии, поступающей в экосистему, от скорости ее движения через нее и, наконец, от интенсивности циркуляции веществ в ней. В отличие от циклического движения веществ, превращение энергии идет в одном направлении. Единственный источник энергии для биосферы – солнечный свет (лишь небольшие локальные экосистемы используют энергию химических реакций). Часть солнечной энергии (0,1 – 1,6 % от общего количества, достигающего поверхности Земли) преобразуется сообществами организмов и переходит на качественно более высокую ступень, трансформируюсь в органическое вещество, представляющее более концентрированную форму энергии, чем солнечный свет. Но большая часть энергии деградирует, проходит через систему и покидает ее в виде низкокачественной тепловой энергии (тепловой сток). Эффективность преобразования энергии в экосистемах отражается в пирамиде энергии, которая строится подсчетом количества энергии (в килокалориях – ккал), аккумулированной единицей поверхности за единицу времени и используемой организмами на каждом трофическом уровне. Только небольшая часть всей этой энергии остается в организмах и сохраняется в биомассе, остальная часть используется для удовлетворения метаболических потребностей живых существ.
     Принципы  организации пищевых цепей отражают действие двух законов термодинамики. Согласно первому закону термодинамики, приток энергии уравновешивается ее оттоком, и каждый перенос энергии сопровождается ее рассеиванием в форме, недоступной для использования тепловой энергии (при дыхании), как того требует второй закон.
     Общее количество энергии, поступающее за единицу времени в экосистему, либо деградирует, либо экспортируется, либо накапливается. Сумма энергии, потерянной при дыхании, накопленной в экосистеме и ушедшей, равна энергии, зафиксированной в процессе фотосинтеза. Вместо одноканальной передачи энергии в пищевой цепи осуществляется двухканальная, когда поток энергии от продуцентов разделяется на детритную и пастбищную цепи. Пастбищная пищевая цепь представляет собой поток энергии, идущий от растений через консументы первого порядка (растительноядных животных). Не использованный консументами остаток чистой продукции пополняет собой мертвое органическое вещество. Оно состоит из фекалий, содержащих часть неусвоенной пищи, а также трупов животных, остатков растительности и называется детритом. Поток энергии, берущий начало от мертвого органического вещества и проходящий через систему разлагателей, называется детритной пищевой цепью. Так как это соответствует основной ярусной структуре экосистемы, прямое потребление живых растений и использование мертвого органического вещества обычно разделены в пространстве и времени, макроконсументы (фаготрофные животные) и микроконсументы (сапрофитные бактерии и грибы) сильно различаются отношениями интенсивности обмена к размерам, для их изучения требуются разные методы. Величины тех частей энергии чистой продукции, которые текут по двум путям, различны в экосистемах разного типа и часто варьируют по сезонам или по годам в одной и той же экосистеме. Во всех экосистемах пастбищная и детритная пищевые цепи взаимосвязаны, так что в ответ на энергетические воздействия извне в системе может быстро происходить переключение потоков.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.