На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 12.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Реферат

В курсовой работе рассматривается метод сеток решения параболических уравнений. Теоретическая часть включает описание общих принципов метода, его применение к решению параболических уравнений, исследование разрешимости получаемой системы разностных уравнений. В практической части разрабатывается программа для численного решения поставленной задачи. В приложении представлен текст программы и результаты выполнения тестовых расчетов.

Объем курсовой работы: 33 с.

Иллюстраций: 5.

Графиков: 1.

Источников: 4.

Ключевые слова: параболическое уравнение, уравнение теплопроводности, метод сеток, краевая задача, конечные разности.

Содержание

Введение

1. Теоретическая часть

1.1 Метод сеток решения уравнений параболического типа

1.2 Метод прогонки решения разностной задачи для уравнений параболического типа

1.3 Оценка погрешности и сходимость метода сеток

1.4 Доказательство устойчивости разностной схемы

2. Реализация метода

2.1 Разработка программного модуля

2.2 Описание логики программного модуля

2.3 Пример работы программы

Заключение

Список источников

Приложение

Введение

К дифференциальным уравнениям с частными производными приходим при решении самых разнообразных задач. Например, при помощи дифференциальных уравнений с частными производными можно решать задачи теплопроводности, диффузии, многих физических и химических процессов.

Как правило, найти точное решение этих уравнений не удается, поэтому наиболее широкое применение получили приближенные методы их решения. В данной работе ограничимся рассмотрением дифференциальных уравнений с частными производными второго порядка, а точнее дифференциальными уравнениями с частными производными второго порядка параболического типа, когда эти уравнения являются линейными, а искомая функция зависит от двух переменных. В общем случае такое уравнение записывается следующим образом:

.

Заметим, что численными методами приходится решать и нелинейные уравнения, но находить их решение много труднее, чем решение линейных уравнений.

введем в рассмотрение величину . В том случае, когда уравнение называется параболическим. В случае, когда величина не сохраняет знак, имеем смешанный тип дифференциального уравнения. Следует отметить, что в дифференциальном уравнении все функции являются известными, и они определены в области , в которой мы ищем решение.

1. Теоретическая часть

1.1 Метод сеток решения уравнений параболического типа

Для решения дифференциальных уравнений параболического типа существует несколько методов их численного решения на ЭВМ, однако особое положение занимает метод сеток, так как он обеспечивает наилучшие соотношения скорости, точности полученного решения и простоты реализации вычислительного алгоритма. Метод сеток еще называют методом конечных разностей. Пусть дано дифференциальное уравнение

.

Требуется найти функцию в области с границей при заданных краевых условиях. Согласно методу сеток в плоской области строится сеточная область , состоящая из одинаковых ячеек. При этом область должна как можно лучше приближать область . Сеточная область (то есть сетка) состоит из изолированных точек, которые называются узлами сетки. Число узлов будет характеризоваться основными размерами сетки : чем меньше , тем больше узлов содержит сетка. Узел сетки называется внутренним, если он принадлежит области , а все соседние узлы принадлежат сетке . В противном случае он называется граничным. Совокупность граничных узлов образует границу сеточной области .

Сетка может состоять из клеток разной конфигурации: квадратных, прямоугольных, треугольных и других. После построения сетки исходное дифференциальное уравнение заменяется разностным уравнением во всех внутренних узлах сетки. Затем на основании граничных условий устанавливаются значения искомого решения в граничных узлах. Присоединяя граничные условия сеточной задачи к разностным уравнениям, записанных для внутренних узлов, получаем систему уравнений, из которой определяем значения искомого решения во всех узлах сетки.

Замена дифференциального уравнения разностным может быть осуществлена разными способами. Один из способов аппроксимации состоит в том, что производные, входящие в дифференциальное уравнение, заменяются линейными комбинациями значений функции в узлах сетки по тем или иным формулам численного дифференцирования. Различные формулы численного дифференцирования имеют разную точность, поэтому от выбора формул аппроксимации зависит качество аппроксимации дифференциального уравнения разностным уравнением.

Рассмотрим неоднородное уравнение теплопроводности, являющееся частным случаем уравнений параболического типа:

,

- известная функция.

Будем искать решение этого уравнения в области

Заметим, что эту полуполосу всегда можно привести к полуполосе, когда . Уравнение (1.2) будем решать с начальными условиями:

,

- известная функция, и краевыми условиями:

где - известные функции переменной .

Для решения задачи область покроем сеткой .

Узлы сетки, лежащие на прямых , и будут граничными. Все остальные узлы будут внутренними. Для каждого внутреннего узла дифференциальное уравнения (1.2) заменим разностным. При этом для производной воспользуемся следующей формулой:

.

Для производной запишем следующие формулы:

,

,

.

Можем получить три вида разностных уравнений:

,

,

,

.

Разностные уравнения (1.5) аппроксимируют уравнение (1.2) с погрешностью , уравнение (1.6) - с такой же погрешностью, а уравнение (1.7) уже аппроксимирует уравнение (1.2) с погрешностью .

В разностной схеме (1.5) задействованы 4 узла. Конфигурация схемы (1.5) имеет вид:

В схеме (1.6) также участвуют 4 узла, и эта схема имеет вид:

В схеме (1.7) участвуют 5 узлов, и эта схема имеет вид:

Первая и третья схемы - явные, вторая схема неявная. В случае явных схем значения функции в узле очередного слоя можно найти, зная значения в узлах предыдущих слоев. В случае неявных схем для нахождения значений решения в узлах очередного слоя приходится решать систему уравнений.

Для узлов начального (нулевого) слоя значения решения выписываются с помощью начального условия (1.3):

Для граничных узлов, лежащих на прямых и , заменив производные по формулам численного дифференцирования, получаем из граничных условий (1.4) следующие уравнения:

Уравнения (1.9) аппроксимируют граничные условия (1.4) с погрешностью , так как используем односторонние формулы численного дифференцирования. Погрешность аппроксимации можно понизить, если использовать более точные односторонние (с тремя узлами) формулы численного дифференцирования.

Присоединяя к системе разностных уравнений, записанных для внутренних узлов, начальные и граничные условия (1.8) и (1.9) для разностной задачи получим полные разностные схемы трех видов. Для проведения вычислений самой простой схемой оказывается первая: достаточно на основании начального условия найти значения функции в узлах слоя , чтобы в дальнейшем последовательно определять значения решения в узлах слоев и т.д.

Третья схема также весьма проста для проведения вычислений, но при ее использовании необходимо кроме значений решения в узлах слоя найти каким-то образом значения функции и в слое . Далее вычислительный процесс легко организовывается. В случае второй схемы, которая является неявной, обязательно приходится решать систему уравнений для нахождения решения сеточной задачи.

С точки зрения точечной аппроксимации третья схема самая точная.

Введем в рассмотрение параметр . Тогда наши разностные схемы можно переписать, вводя указанный параметр. При этом самый простой их вид будет при .

В любом случае согласно методу сеток будем иметь столько уравнений, сколько имеется неизвестных (значения искомой функции в узлах). Число неизвестных равно числу всех узлов сетки. Решая систему уравнений, получаем решение поставленной задачи.

Разрешимость этой системы для явных схем вопросов не вызывает, так как все действия выполняются в явно определенной последовательности. В случае неявных схем разрешимость системы следует исследовать в каждом конкретном случае. Важным вопросом является вопрос о том, на сколько найденные решения хорошо (адекватно) отражают точные решения, и можно ли неограниченно сгущая сетку (уменьшая шаг по осям) получить приближенные решения, сколь угодно близкие к точным решениям? Это вопрос о сходимости метода сеток.

На практике следует применять сходящиеся разностные схемы, причем только те из них, которые являются устойчивыми, то есть при использовании которых небольшие ошибки в начальных или промежуточных результатах не приводят к большим отклонениям от точного решения. Всегда следует использовать устойчивые разностные схемы, проводя соответствующие исследования на устойчивость.

Первая из построенных выше разностных схем в случае первой краевой задачи будет устойчивой при . Вторая схема устойчива при всех значениях величины . Третья схема неустойчива для любых , что сводит на нет все ее преимущества и делает невозможной к применению на ЭВМ.

Явные схемы просты для организации вычислительного процесса, но имеют один весьма весомый недостаток: для их устойчивости приходится накладывать сильные ограничения на сетку. Неявные схемы свободны от этого недостатка, но есть другая трудность - надо решать системы уравнений большой размерности, что на практике при нахождении решения сложных уравнений в протяженной области с высокой степенью точности может потребовать больших объемов памяти ЭВМ и времени на ожидание конечного результата. К счастью, прогресс не стоит на месте и уже сейчас мощности современных ЭВМ вполне достаточно для решения поставленных перед ними задач.

1.2 Метод прогонки решения разностной задачи для уравнений параболического типа

Рассмотрим частный случай задачи, поставленной в предыдущем разделе. В области

найти решение уравнения

с граничными условиями

и начальным условием

.

Рассмотрим устойчивую вычислительную схему, для которой величина не является ограниченной сверху, а, значит, шаг по оси и может быть выбран достаточно крупным. Покроем область сеткой

Запишем разностное уравнение, аппроксимирующее дифференциальное уравнение (1.10) во всех внутренних узлах слоя . При этом будем использовать следующие формулы:

,

.

Эти формулы имеет погрешность . В результате уравнение (1.10) заменяется разностным:

Перепишем (1.13) в виде:

.

Данная вычислительная схема имеет следующую конфигурацию:

Система (1.14) - (1.16) представляет собой разностную задачу, соответствующую краевой задаче (1.10) - (1.12).

За величину мы положили .

(1.14) - (1.16) есть система линейных алгебраических уравнений с 3-диагональной матрицей, поэтому ее резонно решать методом прогонки, так как он в несколько раз превосходит по скорости метод Гаусса.

.

Здесь , - некоторые коэффициенты, подлежащие определению. Заменив в (1.17) на будем иметь:

.

Подставив уравнение (1.18) в (1.14) получим:

.

Сравнив (1.17) и (1.19) найдем, что:

Положим в (1.14) и найдем из него :

,

.

Заметим, что во второй формуле (1.21) величина подлежит замене на согласно первому условию (1.15).

С помощью формул (1.21) и (1.20) проводим прогонку в прямом направлении. В результате находим величины

Затем осуществляем обратный ход. При этом воспользуемся второй из формул (1.15) и формулой (1.17). Получим следующую цепочку формул:

Таким образом, отправляясь от начального слоя , на котором известно решение, мы последовательно можем найти значения искомого решения во всех узлах стеки.

Итак, мы построили неявную схему решения дифференциальных уравнений параболического типа методом сеток.

1.3 Оценка погрешности и сходимость метода сеток

При решении задачи методом сеток мы допускаем погрешность, состоящую из погрешности метода и вычислительной погрешности.

Погрешность метода - это та погрешность, которая возникает в результат и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.