На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Определение потребности в сырье для выполнения плана по изготовлению комплектов елочных украшений, цены единицы продукции, производимой предприятиями отрасли. Решение системы уравнений тремя способами (матричный метод, метод Крамера, метод Гаусса).

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 22.07.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


6

Задание 1

Предприятию для изготовления наборов елочных украшений необходимо изготовить их составные части - шар, колокольчик, мишура. Эти данные представлены в таблице:

Наименование составных частей
Виды наборов
1
2
3
4
Шар
5
6
8
10
Колокольчик
3
4
6
0
Мишура
0
3
5
8
В свою очередь для изготовления этих составных частей необходимы три вида сырья - стекло (в г), папье-маше (в г), фольга (в г), потребности в котором отражены в следующей таблице
Вид сырья
Составные элементы
Шар
Колокольчик
Мишура
Стекло
5
0
0
Папье-маше
0
4
0
Фольга
3
0
75
Требуется:
1) определить потребности в сырье для выполнения плана по изготовлению комплектов первого, второго, третьего и четвертого вида в количестве соответственно x1, x2, x3 и x4 штук;
2) провести подсчеты для значений x1 = 500, x2 = 400, x3 = 300 и x4=200.
Решение: составим условия для определения числа деталей в зависимости от числа и вида наборов. Пусть n1, n2 и n3 - число шаров, колокольчиков и мишуры, соответственно.
Тогда условия будут выглядеть следующим образом:
n1 = 5x1 + 6x2 + 8x3 + 10x4
n2 = 3x1 + 4x2 + 6x3
n3 = 3x2 + 5x3 + 8x4

Составим условия определяющие потребности в сырье в зависимости от вида деталей. Пусть y1, y2 и y3 - потребности в стекле, папье-маше и фольге, соответственно:
y1 = 5n1
y2 = 4n2
y3 = 3n1 + 75n3

Теперь подставим вместо ni - полученные ранее равенства.
y1 = 5· (5x1 + 6x2 + 8x3 + 10x4) = 25x1 + 30x2 + 40x3 + 50x4
y2 = 4· (3x1 + 4x2 + 6x3) = 12x1 + 16x2 + 24x3
y3 = 3· (5x1 + 6x2 + 8x3 + 10x4) + 75· (3x2 + 5x3 + 8x4) = 15x1 + 243x2 + 399x3 + 630x4

Проведем подсчеты для значений
x1 = 500, x2 = 400, x3 = 300 и x4=200.
y1 = 25 * 500 + 30 * 400 + 40 * 300 + 50 * 200 = 46500 г.
y2 = 12 * 500 + 16 * 400 + 24 * 300 = 19600 г.
y3 = 15 * 500 + 243 * 400 + 399 * 300 + 630 * 200 = 350400 г.

Задание 2

Пусть aij - количество продукции j, произведенной предприятием i, а bi - стоимость всей продукции предприятия i исследуемой отрасли. Значения aij и bi заданы матрицами A и В соответственно. Требуется определить цену единицы продукции каждого вида, производимой предприятиями отрасли. В ходе выполнения задания необходимо составить систему уравнений, соответствующую условиям, и решить ее тремя способами (матричный метод, метод Крамера, метод Гаусса).

,

Решение:

Составим систему уравнений:

Матричное уравнение выглядит следующим образом:

A · X = B

Домножим слева каждую из частей уравнения на матрицу A-1

A-1 · A · X = A-1 · B; E · X = A-1 · B; X = A-1 · B

Найдем обратную матрицу A-1

Д = 12 * 9 * 1 + 6 * 8 * 10 + 15 * 5 * 11 - 15 * 9 * 8 - 6 * 5 * 1 - 12 * 10 * 11 = - 1017

;

=

X =· = =

Решим систему методом Крамера

Д = - 1017

Д1 = = 231 * 9 * 1 + 238 * 8 * 10 + 216 * 5 * 11 - 216 * 9 * 8 - 238 * 5 * 1 - - 231 * 10 * 11 = - 9153

Д2 = = 12 * 238 * 1 + 6 * 8 * 216 + 15 * 231 * 11 - 15 * 238 * 8 - 6 * 231 * 1 - 12 * 216 * 11 = - 7119

Д3 = = 12 * 9 * 216 + 6 * 231 * 10 + 15 * 5 * 238 - 15 * 9 * 231 - 6 * 5 * 216 - 12 * 10 * 238 = - 11187

x1 = Д1/Д = - 9153/ (- 1017) = 9

x2 = Д2/Д = - 7119/ (- 1017) = 7

x3 = Д3/Д = - 11187/ (- 1017) = 11

Решим систему методом Гаусса

=> => =>

=> => = >

Задание 3

Найти частные производные первого и второго порядков заданной функции:

Решение:

Задание 4

Задана функция спроса , где p1, p2 - цены на первый и второй товары соответственно. Основываясь на свойствах функции спроса, определить: какой товар является исследуемым, а какой альтернативным и эластичность спроса по ценам исследуемого и альтернативного товаров. В процессе решения отметить, какими являются данные товары - взаимозаменяемыми или взаимодополняемыми.

Решение: эластичность спроса по цене равна первой производной от функции спроса:

эластичность отрицательная, следовательно, первый товар - исследуемый.

эластичность положительная, следовательно, второй товар - альтернативный.

Товары являются товарами заменителями, т.к рост цен на альтернативный товар приводит к росту спроса.

Задание 5

В таблице приведены данные о товарообороте магазина за прошедший год (по месяцам). Провести выравнивание данных по прямой с помощью метода наименьших квадратов.

Воспользовавшись найденным уравнением прямой, сделать прогноз о величине товарооборота через полгода и год. Сопроводить задачу чертежом, на котором необходимо построить ломаную эмпирических данных и полученную прямую.

Проанализировав чертеж, сделайте выводы.

и т.д.................


Месяц
1
2
3

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.