Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Сутнсть понять рвносильност та рвновеликост для багатокутникв. Леми та теореми рвносильност та рвновеликост як методв розрахунку площ багатокутникв. Розрахунок площ випуклих багатокутникв методами рвновеликост при геометричних побудуваннях.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 16.07.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


2
Курсова робота
Учбово-посібний матеріал уроків в школі на тему
«Рівносильні та рівновеликі багатокутники»
ЗМІСТ

ВСТУП
РОЗДІЛ І. Сутність понять рівносильності та рівновеликості для багатокутників
1.1 Леми та теореми рівносильності та рівновеликості як методів розрахунку площ багатокутників
1.2 Класичні приклади рівновеликості багатокутників, складеними методами „розрізання” та „доповнення” рівноскладеними елементами багатокутників
РОЗДІЛ ІІ. Розрахунок площ випуклих багатокутників методами рівновеликості при геометричних побудуваннях
2.1 Розрахунок площ основних багатокутників (прямокутник, паралелограм, трикутник, трапеція) методом побудови рівновеликих геометричних фігур
2.2 Розрахунок площі несиметричного п'ятикутника методом побудови рівновеликого трикутника
РОЗДІЛ ІІІ. Розрахунок площ невипуклих багатокутників методами рівновеликості з використанням координатних підходів аналітичної геометрії
3.1 Застосування методу рівновеликості для розрахунку площ багатокутників
3.2 Розрахунок площі невипуклого багатокутника композицією результатів координатно - аналітичного методу
ВИСНОВКИ ТА ПРОПОЗИЦІЇ
СПИСОК ЛІТЕРАТУРИ
ВСТУП
Проблема рівноскладеності та рівносильності рівновеликих фігур формулюється в такий спосіб: чи можна кожну із двох рівновеликих фігур «скласти» з того самого набору фігур? Ця проблема для різних класів фігур вирішується по-різному.
Рівновеликі фігури - це плоскі (просторові) фігури однакової площі (об'єму); рівноскладені фігури - фігури, які можна розрізати на однакове число відповідно конгруентних (рівних) частин. Звичайне поняття рівноскладеності застосовується тільки до багатокутників і багатогранників. Рівноскладені фігури є рівновеликими.
Термін „рівносильність” багатокутників в математиці відсутній, його рідке застосування еквівалентне терміну - „рівні” багатокутники, тобто багатокутники у яких кількість сторін, внутрішні кути при відповідних вершинах та площа одночасно дорівнюють один одному. Основним предметом досліджень математики багатокутників є рівновеликі багатокутники, серед яких „рівносильні” становлять частний випадок.
Угорський математик Я. Больяй (1832) і німецький математик П. Гервин (1833) довели, що рівновеликі багатокутники є рівноскладеними (теорема Больяй - Гервина). Тому розрізуванням на частині й перекладанням їх можна будь-який багатокутник перетворити в рівновеликий йому квадрат.
Поняття рівноскладеності лежить в основі «методу розбивки», застосовуваного для обчислення площ багатокутників: паралелограм «розрізуванням і перекладанням» зводять до прямокутника, трикутник - до паралелограма, трапецію - до трикутника.
Еквівалентним поняттю рівноскладеності є поняття рівнодоповненості, що лежить в основі «методу доповнення», тобто доповнення двох фігур рівними частинами так, щоб фігури, які вийшли після такого доповнення були рівні. Так, паралелограм рівновеликий прямокутнику, який має ті ж самі основу й висоту, трикутник рівновеликий паралелограму із удвічі меншою основою й тією же висотою( або з тією же основою й удвічі меншою висотою). Квадрат, побудований на гіпотенузі прямокутного трикутника, і квадрати, побудовані на його катетах, можна доповнити чотирма рівними трикутниками так , що будуть складені рівні квадрати( це приклад рівновеликості по доповненню на відміну від рівновеликості по розрізуванню).
У курсовій роботі наведені теореми та їх доведення, а також численні приклади побудови рівновеликих багатокутників методами „розрізання” на рівноскладені фігури, а також сучасні методи аналітичної геометрії для обчислення площі будь-якого багатокутника, заданого на координатній площині координатами своїх вершин.
РОЗДІЛ І. Сутність понять рівносильності та рівновеликості для багатокутників
1.1 Леми та теореми рівносильності та рівновеликості як методів розрахунку площ багатокутників

Означення. Багатокутником називається замкнута ламана без самоперетинань. Багатокутник розбиває площину на дві частини, одна йз яких обмежена й називається внутрішністю багатокутника (насправді це твердження, називане теоремою Жордана для багатокутників, не зовсім очевидно) [7].
Означення. Багатокутник називається опуклим, якщо для будь-яких двох точок, що лежать усередині нього, усередині нього лежить також відрізок, який їх з'єднує.
Два багатокутники називають рівносильними (рівноскладеними), якщо один з них можна розрізати на багатокутники й скласти з них іншої. Очевидно, що рівноскладені багатокутники є рівнове-ликими. Виявляється, вірно й зворотне [7].
Теорема Бойя і Гервіна. Будь-які два рівновеликих багатокутники рівноскладені [6].
Так, як ілюстрація умов теореми, на рис.1.1. наведений приклад компьютерної анімації розрізання трикутника на чотири частини (багатокутники) та складання з них квадрату методом послідовного повертання розрізаних частин.
Рис. 1.1 Приклад перетворення рівноскладених та рівновеликих багатокутників (рівнобічний трикутник у квадрат)
Приведемо математичне доказування теореми [6].
Багатокутники P і P' називаються рівноскладеними, якщо вони допускають розбивки на рівні багатокутники (тобто існують такі розбивки {M1,..., Mn} і {M'1,..., M'n} багатокут-ників P і P' відповідно, що Mi = M'i при всіх i < n). Очевидно, що рівноскладені багатокут-ники мають однакову площу. Чи вірно зворотне твердження? Перш ніж відповісти на це питання, доведемо кілька допоміжних тверджень.
Лема 1. Якщо багатокутник P1 рівноскладений з багатокутником P2 і багатокутник P2, у свою чергу, рівноскладений з P3, то P1 і P3 також рівноскладені.
Лема 2. Будь-який трикутник ABC рівноскладений з деяким прямокутником.
Доведення. Нехай [AB] - більша сторона трикутника ABC (рис.1.2). Тоді підстава висоти [CH] належить відрізку [AB]. Через точку M - середину висоти [CH] - проведемо пряму a, паралельну (AB). Позначимо через P, L, E і F точки перетинання прямій a зі сторонами [AC] і [BC], а також проекції точок A і B на пряму a відповідно.
Рис.1.2 До Доведення Леми 2
Тепер рівноскладеність ? ABC і прямокутника AEFB витікає з умов ? AEP = ?CMP, ?BFL = ?CML. Лема доведена.
Лема 3. Якщо паралелограми ABCD і KLMN мають загальну основу й однакову площу, то вони рівноскладені.
Доведення. Будемо вважати, що відрізки [AB] і [KL] збігаються, і точки M і N лежать на прямій (CD) - рис.1.3. Розглянемо окремо два випадки взаємного розташування відрізків [CD] і [MN]. Перший випадок. Нехай відрізки [CD] і [MN] перетинаються. Не обмежуючи спільності, припустимо, що точка C лежить на відрізку [MN].
Рис.1.3 До доведення Леми 3 Рис.1.4 До доведення Леми 3
Тоді рівноскладеність ABCD і ABMN витікає з умови ?DAN = ?CBM.
Другий випадок. Якщо відрізки [CD] і [MN] не перетинаються, то відкладемо послідовно точки C1 = C,...,Cn так, що [CiCi+1] = [CD] при i ? n?1 і відрізок [Cn?1Cn] перетинає [MN] - рис.1.4.
Тепер до ланцюжка паралелограмів ABCD, ABC1C2,..., ABCn?1Cn, ABMN досить застосувати перший випадок і лему 1. Лема доведена.
Лема 4. Якщо прямокутники ABCD і KLMN мають однакову площу, то вони рівноскладені.
Доведення. Не обмежуючи спільності міркування, будемо вважати, що відрізок [AB] - найбільша зі сторін даних прямокутників - рис.1.5. Тоді на промені [ML) найдуться такі точки P і S, що S ? [PM], [PS] = [KN] і [SN] = [AB]. Чотирикутники ABCD і KNSP, а також KNSP і KLMN рівноскладені по попередній лемі. Тоді з леми 1 витікає, що ABCD і KLMN рівноскладені. Лема доведена.
Рис.1.5 До доведення Леми 4
Лема 5. Будь-який багатокутник M рівноскладений з деяким прямокутником.
Доведення. Нехай {Ti: i < n} - розбивка M на трикутники. Зафіксуємо деякий нетривіальний відрізок [A1B1] . Через точки A1 і B1 перпендикулярно прямій (A1B1) проведемо дві прямі. На цих прямих виберемо сонаправлені промені [A1X) і [B1Y). На промені [A1X) виберемо послідовно точки A2,...,An+1, а на промені [B1Y) - точки B2,...,Bn+1 так, що площа прямокутника AiAi+1Bi+1Bi дорівнює площі трикутника Ti при i < n. З лем 2 і 4 треба, що Ti і AiAi+1Bi+1Bi рівноскладені. Виходить, M і A1An+1Bn+1B1 рівноскладені. Лема доведена.
Теорема 1. [ Бойяи-Гервин] Багатокутники M і N равноскладені тоді й тільки тоді, коли вони рівновеликі.
Доведення. Равноскладені багатокутники - мають рівні площі. Доведемо зворотне твердження.
Нехай SM = SN. По лемі 5 для M і N найдуться такі прямокутники ABCD і A1B1C1D1, що M і ABCD, а також N і A1B1C1D1 рівноскладені. З рівностей SABCD = SM = SN = SA1B1C1D1 і леми 4 витікає рівноскладеність ABCD і A1B1C1D1. Тепер рівноскладеність M і N витікає з леми 1. Теорема доведена.
Близьким до поняття рівноскладеності є рівнодоповнюємість багатокутників.
Наприклад, паралелограм ABCD і прямокутник EFGH на рис.1.6 - рівнодоповнюємі.
Рис.1.6 До рівнодоповнюємості багатокутників
Звідси витікає рівність площ цих чотирикутників.
Теорема 2. Багатокутники M і N рівнодоповнюємі тоді й тільки тоді, коли вони рівновеликі.
Доведення. Рівновеликість двох рівнодоповнених багатокутників очевидна. Нехай тепер SM = SN. Існують два рівних по площі квадрата K1 і K2, які містять M і N відповідно. На рис.1.7 наведений приклад рівновеликих та рівнодоповнюємих багатокутників - „грецького хреста” та відповідного квадрату, який отримуємо „ відрізанням” та доповненням відповідних трикутників 2,3,4,5 до основної фігури 1.


2
Рис.1.7 Рівнодоповнення „грецького хреста” в рівновеликий (рівноскладений) квадрат
1.2 Класичні приклади рівновеликості багатокутників, складеними методами „розрізання” та „доповнення” рівноскладеними елементами багатокутників

Класичним прикладом освоєння равновеликості та рівноскладеності багатокутників є древня китайська головоломка «Танграм” [5], яка виникла в Китаї 4 тис.років тому. Головоломка представляє собою квадрат 12*12 квадратів, які розрізаються на 7 окремих багатокутників - 5 трикутників, 1 квадрат та 1 паралелограм (рис.1.8).
Рис. 1.8 Побудова структурних багатокутників головоломки „танграм”
Рис. 1.9 Декілька складених фігурок - багатокутників з 7 елементів головоломки „танграм”
Рис. 1.10 Розшифрування техніки складання фігурок - багатокутників на рис.1.19 за допомогою елементів „танграма”
Рис. 1.11 Рівновеликі та рівноскладені багатокутники з 7 елементів - елементарних багатокутників головоломки „танграм”
За допомогою методів рівновеликості та рівноскладеності багатокутників вирішують-ся наступні задачі [5]:
1) Довести, що в п'ятикутної зірки (рис.1.12) замальована рівно половина площі
2) Довести, що в правильного восьми кутника (рис.1.13) замальована половина площі
Рис. 1.12 Рис.1.13
Відповіді:
На рис. 1.14 та рис.1.15 видно, що при розбитті зірки та вісьмокутника на окремі елементарні багатокутники - біла та замальована частини складаються з рівноскладених елементів, тобто площі рівні.
Рис. 1.14 Рис. 1.15
Класичне доведення теореми Піфагора як історичний приклад застосування методу рівновеликості для розрахунку площі трикутника на плоскості - „Площа квадрата, побудованого на гіпотенузі прямокутного трикутника, дорівнює сумі площ квадратів, побудованих на його катетах.” [6].
Це одна з найвідоміших геометричних теорем стародавності, називана теоремою Пифагора. Її й зараз знають практично всі, хто коли-або вивчав планіметрію.
Не підлягає, однак, сумніву, що цю теорему знали за багато років до Піфагора. Так, за 1500 років до Піфагора древні єгиптяни знали про те, що трикутник зі сторонами 3, 4 і 5 є прямокутним, і користувалися цією властивістю (тобто теоремою, зворотнью теоремі Пифагора) для побудови прямих кутів при плануванні земельних ділянок і споруджень будинків. Та й понині сільські будівельники й теслі, закладаючи фундамент хати, виготовляючи її деталі, вичерчують цей трикутник, щоб одержати прямий кут. Це ж саме застосовувалось тисячі років тому при будівництві чудових храмів у Єгипті, Вавилоні, Китаї, імовірно, і в Мексиці. У самому древньому математико-астрономічному творі, що дійшов до нас, китайському « Чжоу-Бі», написаному приблизно за 600 років до Піфагора, серед інших пропозицій, що ставляться до прямокутного трикутника, утримується й теорема Піфагора. Ще раніше ця теорема була відома індусам. Із глибокої стародавності математики знаходять всі нові й нові доведення теореми Піфагора, всі нові й нові задуми її доведень. Таких доведень - більш-менш строгих, більш-менш наочних - відомо більше півтори сотень, але прагнення до збільшення їхнього числа збереглося.

Доведення, засновані на використанні поняття рівновеликості багатокутників, - це доведення, у яких квадрат, побудований на гіпотенузі даного прямокутного трикутника «складається» з таких же фігур, що й квадрати, побудовані на катетах. Можна розглядати й такі доведення, у яких застосовується перестановка фігур, що складаються, і враховується ряд нових ідей.

На рис. 1.16 зображено два рівних квадрати. Довжина сторін кожного квадрата дорівнює a + b. Кожний із квадратів розбитий на частині, що складаються із квадратів і прямокутних трикутників. Ясно, що якщо від площі квадрата відняти учетверенну площу прямокутного трикутника з катетами a, b, те залишаться рівні площі, тобто c2 = a2 + b2. Втім, древні індуси, яким належить це міркування, звичайно не записували його, а супровод-жували креслення лише одним словом: «дивися!» Цілком можливо, що такий же доказ запропонував і Пифагор.

Рис.1.16 Доказ теореми Пифагора на підставі рівновеликості та рівноскладеності багатокутників

РОЗДІЛ ІІ. Розрахунок площ випуклих багатокутників методами рівновеликості при геометричних побудуваннях

2.1 Розрахунок площ основних багатокутників (прямокутник, паралелограм, трикутник, трапеція) методом побудови рівновеликих геометричних фігур

Матеріал заснований на наступних аксіомах і теоремах [4]:

1. Про паралельні прямі

2. Про пересічу пряму для паралельних прямих і утворених нею кутах

3. Означеннях прямокутника, трикутника, паралелограма й трапеції

4. Про площу прямокутника

1). Про паралельні прямі

Теорема. Мінімальна відстань між двома паралельними прямими на площині є величина постійна й визначається перпендикуляром, опущеним з будь-якої точки однієї прямої на іншу.

Доведення.

Рис. 2.1

Розглянемо дві прямі а й b, кожна з яких перпендикулярна до прямої с (рис.2.1). Якби прямі а й b перетиналися, то із точки їхнього перетинання були б побудовані два перпендикуляри до прямої с, що неможливо. Отже, прямі а й b не перетинаються, тобто паралельні. Отже, дві прямі, перпендикулярні до третьої прямої, паралельні.

Сформульоване твердження виражає ознака (перпендикулярність двох прямих до третьої прямої), по якому можна зробити висновок про паралельність двох прямих, або, коротко говорячи, ознака паралельності двох прямих.

2. Про січну паралельних прямих і утворених нею кутах

Нехай a і b - дві паралельні прямі й c - третя пряма, що перетинає прямі a і b (рис.2. 2). Пряма c стосовно паралельних прямих a і b називається січною.



Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.