На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


учебное пособие Теоретичн вдомост з курсу числення функцй однєї та багатьох змнних, наглядн приклади та вправи з розвязанням. Тренувальн вправи для розвязання на практичних заняттях самостйної роботи. Зразки контрольних робт з кожної розглянутої теми.

Информация:

Тип работы: учебное пособие. Предмет: Математика. Добавлен: 10.04.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


54

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДОНБАСЬКИЙ ГІРНІЧО-МЕТАЛУРГІЙНИЙ ІНСТИТУТ

Т.М. Сукач

Вивчення диференціального числення функцій однієї та багатьох змінних в умовах модульно-рейтингової системи

Навчальний посібник

Алчевськ, 2004

Передмова


Вища математика, як навчальна дисципліна, є однією з осноних при підготовці висококваліфікованих кадрів у вищих технічних та інших навчальних закладах. Диференціальне числення є основним розділом курсу вищої математики в цілому.
Без засвоєння основних положень, на яких базується диференціальне числення, не можна на належному якісному рівні застосовувати теорію та методи вищої математики при розв'язанні ряду задач з різних галузей знань (при вивченні фізики, електротехніки, інших інженерних та економічних спеціальностей).
Матеріал посібника поділено на 4 глави:
1) Функція, границя, неперервність; 2) Диференціальне чис-лення функції однієї змінної; 3) Дослідження функції за допомогою похідних; 4) Диференціальне числення функцій багатьох змінних.
Кожна глава складається з параграфів, яки містять короткі теоретичні відомості та приклади розв'язання типових вправ. Для самостійної роботи студентів наводиться комплекс типових вправ з відповідями. Наприкінці кожної глави запропоновано зразки контрольних робот з теми, питання до колоквіуму, завдання семестрової роботи студентів. Наведена інструкція що до модульно-рейтингового контролю знань студентів при вивченні даного розділу вищої математики.
Зміст посібника, а також рівень навчальних вимог до знань студентів відповідає програмі курсу “Вища математика для інженерно-технічних, економічних спеціальностей вищих навчальних закладів, студентів технічних коледжів”.

1. Функція, границя, неперервність

1.1 Функція. Область визначення функції

Нехай маємо множину Х дійсних чисел. Якщо кожному числу за певним правилом або законом поставлено у відповідність одне дійсне число у, з множини , то говорять, що на множені Х визначено функцію і записують .

При цьому множина Х називається областю визначення або областю існування функції; х називають аргументом або незалежною змінною; у називають залежною змінною або функцією; називають значенням функції в точці х; -- множина, до якої належить значення функції.

Множину всіх значень функції, яких вона набуває при , називають областю значень функції.

Приклад 1. Знайти область визначення функції

.

Розв'язання. Функція у існує, якщо підкореневий вираз невід'ємний. Тому область визначення знаходиться з нерівності:

Таким чином, областю визначення даної функції є відрізок .

Приклад 2. Знайти область визначення функції

.

Розв'язання. Функція визначена, якщо .

Таким чином, область визначення даної функції є сукупність інтервалів:

та .

Приклад 3. Знайти область визначення функції

.

Розв'язання. Функція визначена, якщо

Тобто

.

1.2 Парність, непарність функцій. Періодичність функцій

Нехай функцію задано на проміжку , який є симетричним відносно початку координат. Це може бути або нескінченний інтервал , або скінчений інтервал , або відрізок , де а -- будь-яке дійсне число.

Функція , визначена на проміжку , називається парною, якщо для будь-якого виконується рівність

Графік парної функції симетричний відносно осі ординат.

Функція , визначена на проміжку , називається непарною, якщо для будь-якого виконується рівність

Графік непарної функції симетричний відносно початку координат.
Приклад 1. Нехай , де . Згідно з відомою властивістю даної функції,
Отже, є непарною функцією.
Приклад 2. Нехай , де . Відомо, що
Отже, є парною функцією.
Приклад 3. Дослідити на парність чи непарність функцію
Знайдемо область визначення функції:
Знайдемо :
Одержали, що , тобто -- непарна.
Функція , визначена на всій числовій осі, називається періодичною, якщо існує число таке, що для всіх виконується тотожність
Число Т при цьому називається періодом функції , а саму функцію називають Т-переодічною.
Якщо число Т є періодом функції , то й число -Т є також періодом :
Якщо -- періодична функція з періодом Т, то функція , де , є періодичною з періодом .
Зокрема, якщо розглянути функцію , де -- сталі, то періодом цієї функції є число .
Зауважимо, що функцію у фізиці називають гармонікою, число називають амплітудою, -- циклічною частотою, а -- початковою фазою гармоніки.
Приклад 4. Знайти період функції .
Розв'язання. Функція має період , тому функція має період .
Приклад 5. Знайти період функції .
Розв'язання. Функція має період , тому має період .
Приклад 6. Знайти період функції .
Розв'язання. Функція має період .
Тренувальні вправи
Дослідити на парність чи непарність функції:
1. [Парна]
2. [Непарна]
3. [Парна] 4. [Парна]
5. [Ні парна, ні непарна]
1.3 Основні елементарні функції та їх графіки

1. Лінійна функція: .
Графік функції -- пряма, досить знати дві точки, бажано точки перетину з осями координат:
; .
2. Степенева функція:
.
Якщо , функція визначена на всій числовій осі, тобто .
Якщо -- функція парна, то приймає значення . Ії графіками будуть параболи відповідно другого, четвертого і т.д. порядків.
Якщо -- графіки параболи третього, п'ятого і т.д. порядків.
3. Показникова функція:
.
Область її визначення , область значень . Якщо , функція , якщо , функція .
Причому, для довільного , тобто графік довільної експоненти проходить через точку .
4. Логарифмічна функція:
.
Це функція обернена до показникової, . Тому графік довільної функції проходить через точку .
5. Тригонометричні функції:
.
Функції та визначені для всіх та мають множину значень .
Функція визначена всюди, крім , , та монотонно зростає в кожному інтервалі області визначення.
Функція всюди визначена, крім , та монотонно спадає в кожному інтервалі області визначення.
Множина значень та -- проміжок .
Функції , , -- непарні, їх графіки симетричні відносно початку координат, -- парна, її графік симетричний відносно .
Функції періодичні. Найменший період синуса та косинуса , та -- .
6. Обернені тригонометричні функції
Тригонометричні функції в інтервалі монотонності мають обернені:
-- обернена до на відрізку ;
-- обернена до на відрізку ;
-- обернена до на відрізку ;
-- обернена до на відрізку .
7. Перетворення графіків функцій
При побудові графіків функцій часто використовують дефор-мації та паралельне перенесення вздовж осі та .
Треба знати, що:
1) графік функції -- дзеркальне відображення графіка відносно осі ;
2) графік функції -- дзеркальне відображення графіка відносно осі ;
3) графік функції , де -- паралельне перенесення графіка на а одиниць масштабу вздовж осі ;
4) графік функції, де -- паралельне перенесення графіка на а одиниць масштабу вздовж осі ;
5) графік функції -- стиснення в разів , або розтягнення в разів графіка вздовж осі ;
6) графік функції -- розтягнення в разів , або стиснення в разів, графіка вздовж осі ;
7) графік функції -- дзеркальне відображення від осі від'ємної частини (під віссю ) графіка функції, додатна частина графіка залишається на місці.
8) графік функції -- дзеркальне відображення від осі правої частини (з додатної півплощини) графіка в ліву півплощину, додатна частина графіка залишається на місці.
Аналогічно визначаються нескінченно малі й нескінченно великі величини при .
Нескінченно великі величини знаходяться в тісному зв'язку з нескінченно малими: якщо при даному граничному переході функція є нескінченно великою, то функція при цьому самому граничному переході буде нескінченно малою й навпаки.

Властивості нескінченно малих

1. Функцію можна подати у вигляді , де - стале число; -- нескінченно мала при , тоді і тільки тоді, коли .

2. Якщо , то .

3. Алгебраїчна сума довільного скінченого числа нескінченно малих функцій є функція нескінченно мала (у самому граничному переході).

4. Добуток нескінченно малої на обмежену функцію є величина нескінченно мала.

5. Добуток скінченого числа нескінченно малих є величина нескінченно мала.

6. Добуток нескінченно малої на постійну є величина нескінченно мала.

7. Частка від ділення нескінченно малої при на функцію, границя якої відмінна від нуля, тобто , є величина нескінченно мала.

При обчисленні границь необхідно знати такі теореми:

1.

2.

3. Якщо і існують, то

4. Для всіх основних елементарних функцій у довільній точці їх визначення справедлива рівність

5. Якщо то

якщо то

6. Якщо то

7. Якщо

то

8. Якщо при , то

9. Якщо при , то

10. Якщо змінна величина зростаюча при і обмежена при , то вона має границю .

Порівняння двох нескінченно малих функцій одного й того самого аргументу х при характеризується наступними означеннями й теоремами.

Нескінченно малі функції і називаються нескінченно малими одного порядку при , якщо дорівнює кінцевому числу .

Якщо , то називається нескінченно малою більш високого порядку в порівнянні з .

Якщо , то і називаються еквівалентними нескінченно малими, й пишуть .

Якщо то називається нескін-ченно малою порядку Р у порівнянні з нескінченно малою .

Теореми про еквівалентні нескінчено малі

1. Границя відношення двох нескінченно малих функцій не зміниться, якщо ці нескінченно малі замінити величинами, їм екві-валентними.

2. Щоб дві нескінченно малі функції були еквівалентними, необхідно й достатньо, щоб їх різниця була нескінченно малою більш високого порядку в порівнянні з кожною з них.

Якщо при , то справедливі такі еквівалентності:

1. 2.

3. 4.

5. 6.

7. 8.

При обчисленні границь найчастіше використовують деякі важливі формули:

-- перша важлива границя;

; -- друга важлива границя,

де е -- ірраціональне число, е = 2,718281...

Наслідки з важливих границь

1. 2.

3. 4.

5. 6.

Розкриття невизначеностей

Обчислення границь зводиться до підстановки в даний вираз граничного значення аргументу. Якщо при цьому одержуємо неви-значені вирази вигляду то знаходження границь у цих випадках називається розкриттям невизначеності.

Для розкриття невизначеності, перш ніж перейти до границі, необхідно перетворити даний вираз.

Невизначеність виду

Щоб розкрити невизначеність виду , треба чисельник та знаменник дробу поділити почленно на найвищий степінь змінної.

Приклад 1. Знайти границю:
а) .
б) .
в) .
г)
Невизначеність виду
Якщо чисельник та знаменник дробу поліном, що перетворюється в нуль при , для розкриття невизначеності чисельник та знаменник треба поділити на .
Приклад 3. Обчислити:
а) .
б)
Приклад 4. Знайти границі:
Розв'язання. Безпосередня підстановка числа під знак границі приводить до невизначеності 0/0. Перетворимо вираз, розклавши чисельник і знаменник на множники і скоротивши на :
Невизначеність виду
Невизначеність виду перетвореннями приводиться до виду та .
Приклад 5.
а)
б)
Невизначеність виду
Невизначеність виду розкривається за допомогою другої стандартної границі.
Приклад 6.
а)
б)
в)
Приклади обчислення границь за допомогою еквівалентних нескінченно малих:
а) .
б) .
.

1.5 Неперервність функції. Дослідження функції на неперервність

Функціяназивається неперервною в точці , якщо існує границя функції в цій точці і вона дорівнює значенню функції в точці :
Функція в точці буде неперервною тоді і тільки тоді, коли виконуються умови:
1. функція визначена в околі точки ;
2. існує границя функції в точці ;
3. границя функції дорівнює значенню функції в цій точці, тобто
(1)
Разом усі ці умови є необхідними й достатніми для того, щоб функція була неперервною в точці .
На практиці при дослідженні функцій на неперервність користуються ознаками, які безпосередньо випливають із співвідношення (1), а саме:
для того, щоб функція була неперервною в точці , треба щоб:
1. була визначеною в околі точки ;
2. існувала лівостороння границя функції в точці, тобто існувало число ;
3. існувала правостороння границя функції - число
;
4. лівостороння й правостороння границя були рівні
=;
5. правостороння й лівостороння границя в точці дорівнювали значенню функції в цій точці, тобто
==
Якщо хоч одна с цих умов не виконується в точці, яка є внутрішньою точкою проміжку, в якому визначена функція, то функція в цій точці називається розривною.
Якщо функція визначена на відрізку , то в точках а і b можна ставити питання тільки про односторонню неперервність, а саме, в точці а -- про неперервність справа, а в точці b -- зліва. Тому природно постає питання про введення таких понять, як неперервність функції в точці зліва і справа.
Функція називається неперервною в точці зліва, якщо виконуються умови:
1. визначена в точці (існує число );
2. в точці існує лівостороння границя функції;
3. лівостороння границя функції дорівнює значенню функції в точці .
Отже, якщо неперервна в точці зліва, то виконується співвідношення
=,
де -- лівостороння границя функції в точці .
Функція називається неперервною в точці справа, якщо виконуються умови:
1. визначена в точці (існує число );
2. в точці існує правостороння границя функції;
3. правостороння границя функції дорівнює значенню функції в точці .
Отже, для неперервної функції справа повинно виконуватися співвідношення
=,
де -- правостороння границя функції в точці .
Точкою розриву функції називають точку в околі якої функція визначена, але в самій точці не задовольняє умові неперервності, що .
1. Точка є точкою усувного розриву, якщо існує , проте не визначена в точці , або . Даний розрив можна усунути, для цього до визначають певним чином функцію в точці ;
2. Точка є точкою розриву першого роду, якщо існують скінченні ліва та права границі функції, але , різницю
називають стрибком функції в точці
3. Точка є точкою розриву другого роду функції , якщо в точці не існує принаймні одна з односторонніх границь функції.
Приклад 1. Дослідити точки розриву функції .
Розв'язання. В точці функція не визначена. Знайдемо при границі даної функції зліва та справа:
Оскільки односторонні границі скінченні, але
,
то є точкою розриву першого роду.
Стрибок в даному випадку в точці дорівнює 2.
Приклад 2. Дослідити на неперервність функцію
Розв'язання. Дана функція визначена у всіх точках за винятком х = 0. Знайдемо односторонні границі функції в цій точці:
Рівність означає, що х = 0 є точкою усувного розриву.
Приклад 3. Визначити характер розриву функції
Розв'язання. Функція в точці не визначена.
При маємо , при . Отже, , .
Тому точка є точкою розриву другого роду.

2. Диференціальне числення функції однієї змінної

2.1 Похідна функції в точці

Похідною функції в точці х називається границя (як що вона існує) відношення приросту функції до приросту аргументу , коли приріст аргументу прямує до нуля, тобто:

. (2.1)

Функція, яка має скінчену похідну в точці х, називається диференційовною в цій точці. Приріст диференційовної в точці х функції має вигляд

, (2.2)

де - нескінченно мала функція при , тобто диференційовна функція неперервна.

Якщо , тоді функція в точці х має нескінченну похідну.

Основні правила диференціювання

(1)

(2)

(3)

(4)

(5)

Похідні основних елементарних функцій
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

Приклад 1. Знайти похідну функції .

Розв'язання. Застосовуючи основні правила диференцію-вання, маємо:

Приклад 2. Знайти похідну функції .

Розв'язання.

Приклад 3. Знайти похідну функції .

Розв'язання. Використовуючи формули, маємо:

Приклад 4. Знайти похідну функції .

Розв'язання.

.

Приклад 5. Знайти похідну функції .

Розв'язання.

.
Приклад 6. Знайти похідну функції .
Розв'язання.

.
Приклад 7. Знайти похідну функції .
Розв'язання.

.
2.2 Похідна складеної та оберненої функції

Якщо функція має похідну в точці х, а функція - має похідну в точці , тоді складена функція диференційовна в точці х, причому

або

Наведене правило обчислення похідної складеної функції застосовується і для композиції довільного скінченого числа функцій.
Наприклад, для складеної функції виду , де , , - диференційовні у відповідних точках функції, має місце рівність
.

Якщо неперервна та строго монотонна в деякому околі точки х функція має похідну в цій точці, тоді обернена функція в точці у має похідну, причому

.

Приклад 1. Знайти похідну функції .

Розв'язання.
Приклад 2. Знайти похідну функції .
Розв'язання. Використовуючи правило диференціювання добутку двох функцій, знаходимо:
Приклад 3. Обчислити похідну функції .
Розв'язання. За правилом диференціювання частки маємо:
Знайдемо похідну функції , розглядаючи ії як композицію двох диференційованих функцій та . За правилом обчислення похідної функції дістанемо:
, тобто .
Таким чином,
Приклад 4. Знайти похідну функції, оберненої до
.
Розв'язання. Дана функція скрізь неперервна та строго монотонна, її похідна , не перетворюється в нуль в жодній точці, тому за правилом диференціювання оберненої функції маємо:
.
Приклад 5. Знайти похідну функції .
Розв'язання.
2.3 Диференціювання показниково-степеневої функції
Похідна показниково-степеневої функції , знаходиться за формулою
Похідні показникових та логарифмічних функцій
(1)
(2)
(3)
(4)
Якщо - диференційовна функція від х, формули мають вигляд:
(5)
(6)
(7)
(8)
Приклад 1. Знайти похідну функції .
Розв'язання. Застосовуючи наведені формули, маємо:
Приклад 2. Знайти похідну функції .
Розв'язання. Застосовуючи формули, знаходимо:
Приклад 3. Знайти похідну функції .
Розв'язання. За наведеними формулами, маємо:
2.4 Диференціювання неявної функції та функції, заданої параметрично

Щоб продиференціювати функцію, яка задається виразом , необхідно цей вираз продиференціювати по х, вважаючи у функцією від х, і з одержаної рівності знайти .


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.