На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Методы и преобразователи для измерения концентрации вещества

Информация:

Тип работы: реферат. Добавлен: 23.08.2012. Сдан: 2012. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство  образования и науки РФ
Федеральное государственное бюджетное образовательное  учреждение высшего профессионального  образования 

«СИБИРСКИЙ  ГОСУДАРСТВЕННЫЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ» 

Кафедра управления качеством и документоведения 
 

РЕФЕРАТ
на тему:
«Методы и преобразователи для измерения  концентрации вещества»
  
 

                                                                           Выполнил: ст.гр. ЭУК-09
                                                                                            Харина Ирина
                                                                                Проверил: к.т.н., доцент
                                                                                                           Деев В.Б. 
 
 
 

                                                     Новокузнецк
2011

     Содержание

         
  Введение…………………………………………………………………………... 3
  1 Электрохимические  методы………………………………………. 5
  2 Электрофизические  методы……………………….………………. 8
  3 ионизационные методы…………………………….………………. 13
  4 спектрометрические (волновые) методы……………………. 17
  5 комбинированные  методы…………………………………………. 24
  заключение……………………………………………….……………………... 29
  список литературы…………………………………………………………….. 31
 
 


                                       Введение
     Преобразователи приборы, задачей которых является определение состава и концентрации веществ, широко применяются для контроля технологических процессов, в химических, биологических,   геологических,   космических   исследованиях, в сельском хозяйстве, медицине, криминалистике и в ряде других областей. Объектами рассматриваемых измерений практически являются все существующие вещества и химические элементы, которые могут находиться в различных агрегатных состояниях. О масштабности аналитических измерений говорит тот факт, что только в химической промышленности необходимо производить анализ более 75 тысяч различных веществ и материалов. Особое значение аналитические измерения имеют для охраны труда и решения проблемы охраны среды обитания. Диапазон измеряемых концентраций чрезвычайно широк. Так, для измерения влажности и концентрации ряда чистых веществ в производственных условиях требуются приборы с верхним пределом измерения 100%. При изготовлении полупроводниковых материалов, волоконных световодов и чистых металлов необходимо определять примеси, концентрация которых составляет 10–6 – 10–8 %. Развитие новых отраслей науки и техники, технология производства новых материалов и веществ с наперед заданными свойствами выдвигают все возрастающие требования к аналитическим измерениям. Например, при исследовании материалов для ядерной энергетики необходимо определять примеси, концентрация которых не превышает 10–10 %.
     Регулирование ряда сложных технологических процессов  по косвенным параметрам (расход, температура, давление) уже недостаточно эффективно – требуются  быстродействующие и точные средства измерений, которые в составе автоматизированных систем управления технологическими процессами обеспечивали бы измерения параметров, непосредственно определяющих состав и свойства вырабатываемых материалов.
     Множество анализируемых веществ и широкий  диапазон измеряемых концентраций обусловили возникновение многочисленных и чрезвычайно разнообразных методов, основанных на использовании различных              физико-химических явлений и свойств вещества.
     Ниже  рассмотрены некоторые, наиболее распространенные электрические методы анализа веществ  и соответствующие средства измерений, которые в зависимости от используемых физико-химических явлений или их сочетания разделяются на электрохимические, электрофизические, ионизационные, спектрометрические и комбинированные. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     1 Электрохимические  методы
     Электрохимические методы анализа основаны на применении электрохимических преобразователей. Эти методы широко применяются для анализа веществ в жидких средах, для измерения концентраций ряда газов и влажности.
     При измерениях электрохимическими методами используются относительно простые  средства измерений, выходным сигналом которых является электрический  ток или напряжение. Наиболее распространенными электрохимическими методами являются кондуктометрический, кулонометрический, потенциало-метрический и ряд их разновидностей, например полярографический, метод потенциометрического титрования и др.
     Кондуктометрический метод измерений  концентраций. Этот метод основан на зависимости электропроводимости веществ от их состава и концентрации отдельных компонентов. Метод широко применяется для измерения концентрации солей, оснований и кислот в жидких растворах и расплавах, для измерения солености воды для измерения концентрации газов по изменению электропроводимости раствора при поглощении им пробы анализируемого газа, а также для измерения влажности в твердых, газообразных и жидких средах.
     Приборы, основанные на этом методе, называются кондуктометрическими концентратомерами, соленомерами, кондуктометрическими газоанализаторами и кондуктометрическими влагомерами.
     В зависимости от используемых типов  электрохимических резистивных  преобразователей кондуктометрические  приборы разделяются на контактные и неконтактные (емкостные и индуктивные). Последние, в свою очередь, делятся на низкочастотные и высокочастотные. Емкостные высокочастотные кондуктомеры целесообразно использовать для измерения слабых концентраций электролитов, а индуктивные – для сильных. Высокочастотные кондуктомеры можно также применять для измерения концентраций твердых частиц в жидкости, особенно в непрозрачных и густоокрашенных жидких средах, которые нельзя исследовать с помощью оптических методов.
     Более подробно рассмотрим метод кондуктометрический метод   измерений концентрации газов. Метод основан на измерении электропроводимости раствора, с которым реагирует определяемый компонент анализируемого газа. Так, для анализа газа CO2 используется его реакция с водным раствором ВаСО3:
      .
     Так как Ва(НСО3)2 более растворим, чем ВаСО3, то электропроводимость раствора увеличивается. На рисунке 1 показана схема кондуктометрического газоанализатора, который состоит из дифференциального электролитического преобразователя, помещенного для выравнивания температур плеч в масляный термостат 1, и мостовой измерительной цепи. Электропроводимость раствора между электродами 2 и 3 постоянная, а между 7 и 8 она изменяется в зависимости от концентрации определяемого компонента газа, который поглощается раствором в змеевике 4. Непрореагировавшая часть газа отделяется от жидкости в газоотделителе 5 и удаляется вместе с раствором через выход 6. Кондуктометрические газоанализаторы используются для измерения малых концентраций широкого класса газов (CO2, S02, H2S, СОСl2, NН3, Н2 и др.) и выпускаются с диапазонами измерений от 0 – 10–6 до 0 – 0,5 % объемных. Газы СО и СН4 перед анализом сначала сжигаются и переводятся в СО2.
     
     Рисунок 1- Схема кондуктометрического газоанализатора
     Так, для анализа газа CO2 используется его реакция с водным раствором ВаСО3:
      .
     Так как Ва(НСО3)2 более растворим, чем ВаСО3, то электропроводимость раствора увеличивается. На рисунке 2 показана схема кондуктометрического газоанализатора, который состоит из дифференциального электролитического преобразователя, помещенного для выравнивания температур плеч в масляный термостат 1, и мостовой измерительной цепи. Электропроводимость раствора между электродами 2 и 3 постоянная, а между 7 и 8 она изменяется в зависимости от концентрации определяемого компонента газа, который поглощается раствором в змеевике 4. Непрореагировавшая часть газа отделяется от жидкости в газоотделителе 5 и удаляется вместе с раствором через выход 6. Кондуктометрические газоанализаторы используются для измерения малых концентраций широкого класса газов (CO2, S02, H2S, СОСl2, NН3, Н2 и др.) и выпускаются с диапазонами измерений от 0 – 10–6 до 0 – 0,5 % объемных. Газы СО и СН4 перед анализом сначала сжигаются и переводятся в СО2.      
     Кулонометрический   метод. Метод основан на измерении тока или количества электричества при электролизе исследуемого вещества или вещества, реагирующего с измеряемым компонентом.
     
     Рисунок 2 - Схема кулонометрического газоанализатора для измерения концентрации S02 в газовых смесях
     На  рис. 2 показана схема кулонометрического газоанализатора для измерения концентрации S02 в газовых смесях. Анализируемый газ через фильтр 1 поступает в датчик 2, заполненный подкисленным водным раствором KI. Датчик имеет две пары электродов: 5 и 6 – электроды цепи электролиза KI и 3 и 4 – измерительные электроды, один из которых (4) из платины, а другой (3) представляет собой каломельный полуэлемент. Электроды 3 и 4 образуют гальванический преобразователь, ЭДС которого зависит от концентрации в растворе свободного йода, который образуется при электролизе KI. Действие газоанализатора основано на непрерывном титровании S02 йодом, который выделяется при электролизе в количестве, эквивалентном концентрации S02. Уравнение реакции титрования: . При изменении концентрации S02 происходит изменение концентрации йода и потенциала платинового электрода 4, что приводит к изменению тока электролиза, который измеряется регистрирующим прибором 7. Газоанализатор работает как система автоматического уравновешивания, поддерживающая скорость выделения йода и, следовательно, ток электролиза пропорциональными количеству S02, поступающему за единицу времени в датчик. Пределы измерений таких газоанализаторов 0 – 0,1;           0 – 0,5% объемных, основная погрешность ± 5% .
     На  этом же принципе основаны газоанализаторы  для измерения микроконцентраций  SO2 (пределы измерений % объемных) с погрешностью  ± 2%, а также для измерения концентраций сероводорода, хлора, озона и др. Постоянная времени таких газоанализаторов около 1 мин. 
 

     2 Электрофизические  методы
     Электрофизические методы основаны на использовании зависимостей физических свойств веществ от их состава и концентрации отдельных компонентов или воздействий анализируемых компонентов на измеряемый физический параметр чувствительного элемента. Для измерений концентраций веществ наиболее широкое применение получили методы и приборы, основанные на использовании тепловых, магнитных, диэлектрических свойств веществ.
     Тепловой  метод. Тепловой метод анализа основан на зависимости тепловых свойств вещества, главным образом его теплопроводности, от его состава и концентрации отдельных компонентов, а также на определении температурных коэффициентов при различных физико-химических фазовых превращениях вещества. Наиболее широкое применение получил метод анализа, основанный на различии теплопроводности компонентов, входящих в анализируемую газовую смесь. Термокондуктометрические газоанализаторы, или катарометры, особенно пригодны для анализа газов Н2, Не, С02, SO2, Сl2, которые значительно отличаются по теплопроводности от других газов, а также для измерения вакуума, т. е. абсолютной концентрации газов безотносительно к их составу. В качестве чувствительных элементов в термокондуктометрических газоанализаторах и вакууметрах обычно используются нагреваемые электрическим током платиновые или полупроводниковые терморезисторы. Изменение концентрации измеряемого компонента газовой смеси, пропускаемой через камеру, где помещен терморезистор, приводит к изменению теплоотдачи и температуры терморезистора, что вызывает изменение его электрического сопротивления. Измерительная цепь таких газоанализаторов обычно представляет собой автоматическую мостовую или компенсационную цепь.
     На  рисунке 3 показана электрическая схема термокондуктометрических газоанализаторов типа ТП. Для уменьшения погрешностей от изменения температуры и напряжения питания датчик газоанализатора содержит восемь терморезисторов, четыре (R1 R4) из них образуют измерительный мост, a R5 R8 сравнительный  мост. Мосты конструктивно выполнены в одном металлическом блоке и питаются от двух вторичных обмоток одного и того же трансформатора. Терморезисторы, образующие плечи R2, R4, R6 и R8, запаяны в ампулы с газовой смесью, соответствующей по концентрации началу шкалы прибора, a R5 и R7 со смесью, соответствующей концу шкалы; R1 и R3 – плечи моста, в которых терморезисторы омываются анализируемой газовой смесью. Напряжение на выходной диагонали измерительного моста, пропорциональное концентрации измеряемого газа, компенсируется напряжением на верхнем участке реохорда RP, питаемого от выходной диагонали сравнительного моста.
     
     Рисунок 3- Электрическая схема термокондуктометрического газоанализатора типа ТП
     Для измерения концентрации компонентов  в дисперсных средах (суспензия, пульпа) применяется калориметрический метод, основанный на зависимости теплофизических параметров дисперсной среды от соотношения ее фаз. Обычно измеряется при стабильной скорости потока. По схемным и конструктивным решениям калориметрические концентратомеры аналогичны тепловым расходомерам.
     На  тепловом методе основаны электрические  гигрометры и психрометры точки  росы, применяемые для измерения  влажности газов. Измерение влажности газа по точке росы заключается в определении температуры поверхности воды, при которой устанавливается динамическое равновесие между количеством влаги, испаряющейся с поверхности, и осаждаемой обратно из газа. При практическом осуществлении метода измеряют температуру QP поверхности твердого тела (металлического зеркала), которое охлаждают до тех пор, пока не появится конденсат (роса). С помощью терморегулятора поддерживают температуру поверхности таким образом, чтобы количество конденсата не менялось. Известны гигрометры, в которых охлаждение зеркала производится с использованием эффекта Пельтье.
     По  температурам точки росы QP и исследуемого газа Q ( ) можно определить относительную влажность (в процентах)
      %
     где E(QP) и Е(Q) — упругости насыщенного пара соответственно при температурах QP и Q.
     Достоинствами гигрометров точки росы являются относительно высокая точность и  возможность измерения влажности  воздуха и различных газов  при низких температурах (–160 °С) и высоких давлениях ( Па), недостатками – сложность конструкции и дополнительные погрешности от загрязнения зеркала содержащимися в газах примесями (пыль, агрессивные газы и т. п.).
     Психрометрические гигрометры основаны на измерении разности температур двух термопреобразователей (терморезисторы, термопары): сухого (Qc), находящегося в исследуемой газовой среде, и мокрого (Qм), который смачивается водой и находится в термодинамическом равновесии с газовой средой. Чем меньше влажность этой среды, тем сильнее испаряется влага с поверхности мокрого термопреобразователя и тем ниже его температура Qм. Психрометрические гигрометры в основном используются для измерения влажности газовых сред при температурах 0 – 100 °С. Измерительная цепь таких гигрометров обычно представляет собой автоматический мост или компенсатор.
     Разновидностью  теплового метода анализа является термохимический метод, применяемый для определения суммарной концентрации примесей в органических веществах или для определения чистоты таких веществ. Метод основан на зависимости температуры кристаллизации вещества от суммарного содержания примесей и позволяет определять содержание примесей в диапазоне 0,5 – 1 % с погрешностью 20 %.
     Магнитный метод. Этот метод получил широкое применение для измерения концентрации кислорода в газовых средах, поскольку из всех газов кислород обладает наибольшей магнитной восприимчивостью. Магнитные методы применяются  для поисков полезных ископаемых, определения магнитных включений в немагнитных материалах, в дефектоскопии и магнитном структурном анализе.
      На рисунке  4, а, б показаны конструкция датчика и схема измерительной цепи термомагнитного кислородомера. Датчик представляет собой кольцевую камеру с горизонтальной трубкой, на которую намотана нагревающая платиновая обмотка, разделенная на две секции r1 и r2. У левого конца горизонтальной трубки расположены полюсные наконечники магнита NS, поэтому парамагнитный газ всасывается с левой стороны в горизонтальную трубку и в ней подогревается.

     Рисунок 4 - Конструкция датчика (а) и схема измерительной цепи термомагнитного кислородомера (б)

 
     У левого конца горизонтальной трубки расположены полюсные наконечники  магнита NS, поэтому парамагнитный газ всасывается с левой стороны в горизонтальную трубку и в ней подогревается. Так как при нагревании газа его магнитная восприимчивость падает, то холодный газ, втягиваясь в магнитное поле, будет выталкивать нагретый газ. В результате в горизонтальной трубке газ движется слева направо со скоростью, пропорциональной концентрации кислорода в испытуемой газовой смеси. Левая секция r1 охлаждается холодной смесью, поступающей из камеры. В правую половину горизонтальной трубки газовая смесь поступает уже нагретой, благодаря чему охлаждение правой секции обмотки r2 значительно меньше, чем левой. Обе секции обмотки включены в два соседних плеча моста.
     Высокая точность измерения при больших  концентрациях кислорода достигается  в результате совместного применения теплового и термомагнитного методов измерений. Основанные на этом принципе газоанализаторы обеспечивают измерения концентрации кислорода в диапазоне 98—100 % объемных с абсолютной погрешностью 0,1 %.
     Магнитные кислородомеры применяются для  измерения концентраций кислорода в широком диапазоне от 0 до 100% объемных в различных газовых смесях с основной погрешностью 0,1 – 5 %. Постоянная времени таких газоанализаторов  10 – 90 с. 
 

     3 Ионизационные методы
     Ионизационные методы основаны на ионизации анализируемого вещества и измерении ионного тока, пропорционального концентрации определяемого компонента. Они широко применяются в вакуумметрах, ионизационных газоанализаторах, в масс-спектрометрах, а также для измерения аэрозолей, влажности газов и др. Существуют разнообразные способы ионизации анализируемого вещества. Наибольшее применение для целей анализа получили:
     а) ионизация газов электронами, возникающими вследствие автоэлектронной эмиссии (преобразователи с холодным катодом) и термоэлектронной эмиссии (преобразователи с горячим катодом);
     б) электроразрядный способ ионизации, основанный на зависимости характеристик электрического разряда в газах от их состава;
     в) ионизация за счет облучения анализируемого вещества радиоактивным и рентгеновским излучением;
     г) термическая ионизация молекул в пламени водорода;
     д) ионизация с помощью лазерного излучения.
     Наряду  с указанными методами ионизации  для анализа находят также применение и ряд других способов, таких, как окислительно-ионизационный, способ поверхностной ионизации, эмиссия положительных ионов, захват электронов, фотоионизационный и др.
     Ионизация атомов и молекул электронами, возникающими вследствие авто- и термоэлектронной эмиссии, широко применяется в вакуумметрах и масс-спектрометрических анализаторах. Датчик такого ионизационного вакуумметра обычно представляет собой вакуумный триод с патрубком для присоединения объекта, где измеряется вакуум. При постоянных значениях анодного напряжения и тока накала значение ионного тока, проходящего через сетку, зависит от абсолютной концентрации газа в межэлектродном пространстве. Диапазон измерений таких вакуумметров составляет Па. При больших давлениях может перегореть катод. Чувствительность датчика 75 мкА/Па. На 1–2 порядка больше чувствительность и верхний предел измерений у вакуумметров с магнитоэлектроразрядным датчиком, в котором под действием магнитного поля увеличивается длина пробега электронов и соответственно ионный ток. Недостатком таких вакуумметров является зависимость показаний от рода газа и внешних магнитных полей.
     Ионизационный метод с использованием радиоактивного излучения применяется в вакуумметрах, газоанализаторах и детекторах хроматографов . Для ионизации газа обычно используются ? (ядра атомов гелия)- и                  ? (электроны, позитроны)-излучения, обладающие большой ионизирующей способностью.
     Наиболее  распространенными разновидностями  этого метода являются методы, непосредственной ионизации, атомов и молекул анализируемого газа радиоактивным излучением и ионизация с помощью метастабильных атомов. Первый способ ионизации, в частности, применяется в радиоактивных ионизационных вакуумметрах, состоящих из ионизационной камеры и измерительной цепи, входной усилитель которой монтируется в одном корпусе с преобразователем и обычно представляет собой электрометрический усилитель. Источник ?-излучения и коллектор ионов расположены внутри камеры, которая при помощи патрубка соединяется с объектом, где измеряется вакуум. Такие вакуумметры характеризуются хорошей воспроизводимостью результатов измерений (разброс не более        1 – 2 %) и практически линейной зависимостью между ионным током и давлением газа (а следовательно, и абсолютной концентрацией газа) в широком диапазоне — от 0,1 до Па. На рисунке 5 оказана схема дифференциального ионизационного анализатора газов, состоящего из двух идентичных ионизационных камер 1 и 2, через одну из которых пропускается чистый газ-носитель (гелий или водород), а через другую – газ-носитель с анализируемым компонентом газа. Камеры имеют общий коллектор ионов 4 и идентичные источники ?-излучения 3, выполненные в виде таблеток из 90Sr, 85Kr или, 147Рm. Разностный ток ионизационных камер создает падение напряжения на высокоомном резисторе R, которое усиливается электрометрическим усилителем 6 и регистрируется самопишущим прибором 5.
      Рисунок 5 - Схема дифференциального ионизационного анализатора  газов
     Такие анализаторы имеют практически  линейную характеристику в широком диапазоне, малую инерционность, высокую чувствительность и способны работать при температурах до 300 °С.
     Метод ионизации метастабильными атомами, который можно назвать методом  двойной ионизации, применяется  в аргоновых и гелиевых анализаторах для измерения концентрации широкого класса веществ. Метод заключается в том, что в электрическом поле с помощью ?-излучения происходит ионизация атомов газа-носителя аргона, вследствие чего в ионизационной камере создается большая концентрация метастабильных атомов аргона с энергией 11,8 эВ, которые, в свою очередь, ионизируют молекулы анализируемого компонента. Для анализа веществ, имеющих более высокий потенциал ионизации, в качестве газа-носителя применяется гелий, энергия метастабильного состояния атомов которого равна 19,8 эВ. 
     Хорошими  метрологическими характеристиками   обладает триодный аргоновый датчик (рисунок 6), у которого, кроме анода 1, катода 2 и источника     ?-излучения 3, имеется коллекторный электрод 4, сигнал с которого подается на электрометрический усилитель. Порог чувствительности такого датчика г/с, постоянная времени 1 – 5 с, нелинейность характеристики 1,2 %.
      

      Рисунок 6 - Триодный аргоновый датчик

     Ионизационно-пламенный метод (рисунок 7) основан на ионизации молекул исследуемого вещества в водородном пламени. Чистый водород, сгорая в воздухе, почти не образует ионов, поэтому водородное пламя имеет очень большое сопротивление (1012—1014 Ом). Если вместе с водородом в преобразователь подступает исследуемый горючий газ, то в результате термической диссоциации и окисления происходит ионизация молекул газа и сопротивление между электродами 1 и 2 преобразователя резко падает. Вследствие этого увеличиваются ток и падение напряжения на резисторе R, которое через усилитель подается на самопишущий прибор.

     

     Рисунок 7 - Схема ионизационно-пламенного анализатора

     Если  вместе с водородом в преобразователь  подступает исследуемый горючий газ, то в результате термической диссоциации и окисления происходит ионизация молекул газа и сопротивление между электродами 1 и 2 преобразователя резко падает. Вследствие этого увеличиваются ток и падение напряжения на резисторе R, которое через усилитель подается на самопишущий прибор. Метод диссоциаций и окисления происходит ионизация молекул газа и сопротивление между электродами 1 и 2 преобразователя резко падает. Вследствие этого увеличиваются ток и падение напряжения на резисторе R, которое через усилитель подается на самопишущий прибор. Метод позволяет обнаруживать микроконцентрации органических соединений, поступающих в преобразователь со скоростью    10–12 – 10–14 г/с. Чувствительность анализаторов составляет 104 – 105 , постоянная времени 1 мс. Линейный рабочий диапазон 106 – 107, рабочая температура до 400 °С. 

     4 Спектрометрические (волновые) методы
     Спектрометрические  методы основаны на избирательной способности  различных веществ поглощать, изучать, отражать, рассеивать или преломлять различного рода излучения. Эта группа методов включает в себя многочисленные методы, в которых используется широкий спектр длин  волн – от  звукового диапазона (103 Гц) до рентгеновских и гамма-излучений (1018 Гц).
     Электроакустический метод. Метод основан на различии в затухании или скорости распространения ультразвуковых колебаний в различных жидкостях и газах, применяется для анализа бинарных газовых и жидких смесей, а также для измерения влажности.
     Приборы, в которых используется этот метод, обычно состоят из акустического  или ультразвукового излучателя и приемника– преобразователя  звуковых колебаний в электрические сигналы. Исследуемая смесь пропускается между излучателем и приемником.
     Радиоспектрометрические методы. К ним относятся методы ядерного магнитного резонанса (ЯМР), электронного парамагнитного резонанса (ЭПР), СВЧ и микроволновая спектроскопия. В последнее время эти методы получили широкое распространение для исследования свойств ядер, молекул, кристаллов и для других физико-химических исследований.
     Метод ядерного магнитного резонанса основан на использовании магнитных свойств атомных ядер, большинство из которых обладает магнитным моментом. Взаимодействие магнитных моментов ядер с внешними магнитными моментами других частиц (ионы, атомы, электроды и др.) дает возможность определять структуру сложных соединений, а также проводить качественный и количественный анализ различных веществ.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.