На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 08.11.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


19

Введение

1. Рефлексивность:

2. Слабая рефлексивность:

3. Сильная рефлексивность:

4. Антирефлексивность:

5. Слабая антирефлексивность:

6. Сильная антирефлексивность:

7. Симметричность:

8. Антисимметричность:

9. Асимметричность:

10. Сильная линейность:

11. Слабая линейность:

12. Транзитивность:

Рефлексивность, свойство бинарных (двуместных, двучленных) отношений, выражающее выполнимость их для пар объектов с совпадающими членами (так сказать, между объектом и его "зеркальным отражением"): отношение R называется рефлексивным, если для любого объекта х из области его определения выполняется xRx. Типичные и наиболее важные примеры рефлексивных отношений: отношения типа равенства (тождества, эквивалентности, подобия и т.п.: любой предмет равен самому себе) и отношения нестрогого порядка (любой предмет не меньше и не больше самого себя). Интуитивные представления о "равенстве" (эквивалентности, подобии и т.п.), очевидным образом наделяющие его свойствами симметричности и транзитивности, "вынуждают" и свойство Р., поскольку последнее свойство следует из первых двух. Поэтому многие употребительные в математике отношения, по определению Р. не обладающие, оказывается естественным доопределить таким образом, чтобы они становились рефлексивными, например, считать, что каждая прямая или плоскость параллельна самой себе, и т.п.

Глава 1. Элементы теории множеств

1.1 Множества

Наиболее простая структура данных, используемая в математике, имеет место в случае, когда между отдельными изолированными данными отсутствуют какие-либо взаимосвязи. Совокупность таких данных представляет собой множество. Понятие множества является неопределяемым понятием. Множество не обладает внутренней структурой. Множество можно представить себе как совокупность элементов, обладающих некоторым общим свойством. Для того чтобы некоторую совокупность элементов можно было назвать множеством, необходимо, чтобы выполнялись следующие условия:

Должно существовать правило, позволяющее определить, принадлежит ли указанный элемент данной совокупности.

Должно существовать правило, позволяющее отличать элементы друг от друга. (Это, в частности, означает, что множество не может содержать двух одинаковых элементов).

Множества обычно обозначаются заглавными латинскими буквами. Если элемент принадлежит множеству , то это обозначается:

Если каждый элемент множества является также и элементом множества , то говорят, что множество является подмножеством множества :

Подмножество множества называется собственным подмножеством, если

Используя понятие множества можно построить более сложные и содержательные объекты.

1.2 Операции над множествами

Основными операциями над множествами являются объединение, пересечение и разность.

Определение 1. Объединением двух множеств называется новое множество

Определение 2. Пересечением двух множеств называется новое множество

Определение 3. Разностью двух множеств называется новое множество

Если класс объектов, на которых определяются различные множества обозначить (Универсум), то дополнением множества называют разность

1.3 Декартово произведение множеств

Одним из способов конструирования новых объектов из уже имеющихся множеств является декартово произведение множеств.

Пусть и - множества. Выражение вида , где и , называется упорядоченной парой. Равенство вида означает, что и . В общем случае, можно рассматривать упорядоченную n-ку из элементов . Упорядоченные n-ки иначе называют наборы или кортежи.

Определение 4. Декартовым (прямым) произведением множеств называется множество упорядоченных n-ок (наборов, кортежей) вида

Определение 5. Степенью декартового произведения называется число множеств n, входящих в это декартово произведение.

Замечание. Если все множества одинаковы, то используют обозначение

.

1.4 Отношение

Определение 6. Подмножество декартового произведения множеств называется отношением степени n (n-арным отношением).

Определение 7. Мощность множества кортежей, входящих в отношение , называют мощностью отношения .

Замечание. Понятие отношения является очень важным не только с математической точки зрения. Понятие отношения фактически лежит в основе всей реляционной теории баз данных. Как будет показано ниже, отношения являются математическим аналогом таблиц. Сам термин "реляционное представление данных", впервые введенный Коддом [43], происходит от термина relation, понимаемом именно в смысле этого определения.

Т. к. любое множество можно рассматривать как декартовое произведение степени 1, то любое подмножество, как и любое множество, можно считать отношением степени 1. Это не очень интересный пример, свидетельствующий лишь о том, что термины "отношение степени 1" и "подмножество" являются синонимами. Нетривиальность понятия отношения проявляется, когда степень отношения больше 1. Ключевыми здесь являются два момента:

Во-первых, все элементы отношения есть однотипные кортежи. Однотипность кортежей позволяет считать их аналогами строк в простой таблице, т.е. в такой таблице, в которой все строки состоят из одинакового числа ячеек и в соответствующих ячейках содержатся одинаковые типы данных. Например, отношение, состоящее из трех следующих кортежей { (1, "Иванов", 1000), (2, "Петров", 2000), (3, "Сидоров", 3000) } можно считать таблицей, содержащей данные о сотрудниках и их зарплатах. Такая таблица будет иметь три строки и три колонки, причем в каждой колонке содержатся данные одного типа.

В противоположность этому рассмотрим множество { (1), (1,2), (1, 2,3) }, состоящее из разнотипных числовых кортежей. Это множество не является отношением ни в , ни в , ни в . Из кортежей, входящих в это множество нельзя составить простую таблицу. Правда, можно считать это множество отношением степени 1 на множестве всех возможных числовых кортежей всех возможных степеней

,

но такая трактовка ничего нового, по сравнению с понятием подмножества, не дает.

Во-вторых. За исключением крайнего случая, когда отношение есть само декартово произведение , отношение включает в себя не все возможные кортежи из декартового произведения. Это значит, что для каждого отношения имеется критерий, позволяющий определить, какие кортежи входят в отношение, а какие - нет. Этот критерий, по существу, определяет для нас смысл (семантику) отношения.

Действительно, каждому отношению можно поставить в соответствие некоторое логическое выражение , зависящее от n параметров (n-местный предикат) и определяющее, будет ли кортеж принадлежать отношению . Это логическое выражение называют предикатом отношения . Более точно, кортеж принадлежит отношению тогда и только тогда, когда предикат этого отношения принимает значение "истина". В свою очередь, каждый n-местный предикат задает некоторое n-арное отношение. Таким образом, существует взаимно однозначное соответствие между n-арными отношениями и n-местными предикатами.

Если это не вызывает путаницы, удобно и отношение, и его предикат обозначать одной и той же буквой. Например, отношение имеет предикат .

2. Примеры отношений

2.1 Бинарные отношения (отношения степени 2)

В математике большую роль играют бинарные отношения, т.е. отношения, заданные на декартовом произведении двух множеств .

2.1.1 Отношение эквивалентности

Определение 8. Отношение на множестве называется отношением эквивалентности, если оно обладает следующими свойствами:

для всех (рефлексивность)

Если , то (симметричность)

Если и , то (транзитивность)

Обычно отношение эквивалентности обозначают знаком или и говорят, что оно (отношение) задано на множестве (а не на ). Условия 1-3 в таких обозначениях выглядят более естественно:

для всех (рефлексивность)

Если , то (симметричность)

Если и , то (транзитивность)

Легко доказывается, что если на множестве задано отношение эквивалентности, то множество разбивается на взаимно непересекающиеся подмножества, состоящие из эквивалентных друг другу элементов (классы эквивалентности).

Пример 1. Рассмотрим на множестве вещественных чисел отношение, заданное просто равенством чисел. Предикат такого отношения:

, или просто

Условия 1-3, очевидно, выполняются, поэтому данное отношение является отношением эквивалентности. Каждый класс эквивалентности этого отношения состоит из одного числа.

Пример 2. Рассмотрим более сложное отношение эквивалентности. На множестве целых чисел зададим отношение "равенство по модулю n" следующим образом: два числа и равны по модулю n, если их остатки при делении на n равны. Например, по модулю 5 равны числа 2, 7, 12 и т.д.

Условия 1-3 легко проверяются, поэтому равенство по модулю является отношением эквивалентности. Предикат этого отношения имеет вид:

Классы эквивалентности этого отношения состоят из чисел, дающих при делении на n одинаковые остатки. Таких классов ровно n:

[0] = {0, n, 2n, …}

[1] = {1, n+1, 2n+1, …}

[n-1] = {n-1, n+n-1, 2n+n-1, …}

2.1.2 Отношения порядка

Определение 9. Отношение на множестве называется отношением порядка, если оно обладает следующими свойствами:

для всех (рефлексивность)

Если и , то (антисимметричность)

Если и , то (транзитивность)

Обычно отношение порядка обозначают знаком . Если для двух элементов и выполняется , то говорят, что "предшествует" . Как и для отношения эквивалентности, условия 1-3 в таких обозначениях выглядят более естественно:

для всех (рефлексивность)

Если и , то (антисимметричность)

Если и , то (транзитивность)

Пример 3. Простым примером отношения порядка является отношение, задаваемое обычным неравенством на множестве вещественных чисел . Заметим, что для любых чисел и выполняется либо , либо , т.е. любые два числа сравнимы между собой. Такие отношения называются отношениями полного порядка.

Предикат данного отношения есть просто утверждение .

Пример 4. Рассмотрим на множестве всех сотрудников некоторого предприятия отношение, задаваемое следующим образом: сотрудник предшествует сотруднику тогда и только тогда, когда выполняется одно из условий:

является начальником (не обязательно непосредственным)

Назовем такое отношение "быть начальником". Легко проверить, что отношение "быть начальником" является отношением порядка. Заметим, что в отличие от предыдущего примера, существуют такие пары сотрудников и , для которых не выполняется ни , ни (например, если и являются сослуживцами). Такие отношения, в которых есть несравнимые между собой элементы, называют отношениями частичного порядка.

2.1.3 Функциональное отношение

Определение 10. Отношение на декартовом произведении двух множеств называется функциональным отношением, если оно обладает следующим свойством:

Если и , то (однозначность функции).

Обычно, функциональное отношение обозначают в виде функциональной зависимости - тогда и только тогда, когда . Функциональные отношения (подмножества декартового произведения!) называют иначе графиком функции или графиком функциональной зависимости.

Предикат функционального отношения есть просто выражение функциональной зависимости .

2.1.4 Еще пример бинарного отношения

Пример 5. Пусть множество есть следующее множество молодых людей: {Вовочка, Петя, Маша, Лена}, причем известны следующие факты:

Вовочка любит Вовочку (эгоист).

Петя любит Машу (взаимно).

Маша любит Петю (взаимно).

Маша любит Машу (себя не забывает).

Лена любит Петю (несчастная любовь).

Информацию о взаимоотношения данных молодых людей можно описать бинарным отношением "любить", заданном на множестве . Это отношение можно описать несколькими способами.

Способ 1. Перечисление фактов в виде произвольного текста (как это сдела и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.