На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Исследование семейства решений линейной системы и связь семейства решений этой системы с её отражающей функцией, а также её свойствами. Установление условий, при которых линейная система имеет общее решение, четная часть которого не зависит от времени.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 21.08.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


19
Министерство образования Республики Беларусь
Учреждение образования Гомельский государственный университет имени Франциска Скорины


Курсовая работа

"Семейства решений с постоянной четной частью"



Гомель, 2005
Реферат

В данной курсовой работе 17 листов. Работа состоит из пяти разделов. Ключевые слова: ДУ, решение, система, общее решение, четность, функция.
В работе содержится исследование семейства решений линейной системы. Выясняется связь семейства решений этой системы с её отражающей функцией и её свойствами. Устанавливаются условия, при которых линейная система имеет общее решение, четная часть которого не зависит от времени.
Библиография - 5 названий.
Содержание

Введение
1. Определение и свойства отражающей функции
2. Простейшая система
3. Система чет-нечет
4. Примеры систем, семейства решений которых имеют постоянную четную часть
5. Семейства решений с постоянной четной частью
Заключение
Литература
Введение

Основным инструментом нашего исследования является понятие «отражающей функции».
При изучении вопросов существования периодических решений дифференциальных систем и уравнений используются свойства симметричности (четность, нечетность и т.п.) как функций, задающих изучаемую систему, так и самих решений.
В данной работе мы будем изучать семейства решений с постоянной четной частью, когда четная часть будет представлена в виде константы.
Исследования с помощью отражающей функции позволяет получить новые результаты даже для уже хорошо изученных линейных систем.
1. Определение и свойства отражающей функции

Рассмотрим систему
, (1.1)

считая, что её правая часть непрерывна и имеет непрерывные частные производные по . Общее решение этой системы в форме Коши обозначим через . Через обозначим интервал существования решения
Пусть
.
Определение: Отражающей функцией системы (1.1) назовем дифференцируемую функцию , определяемую формулой (*) или формулами .
Для отражающей функции справедливы свойства:
1). Для любого решения , системы верно тождество
; (1.2)

2). Для отображающей функции любой системы выполнены тождества:
; (1.3)
3). Дифференцируемая функция будет отражающей функцией системы (1.1) тогда и только тогда, когда она удовлетворяет уравнениям в частных производных
(1.4)
и начальному условию
. (1.5)
Уравнение (1.4) будем называть основным уравнением (основным соотношением) для отражающей функции.
> Свойство 1) следует непосредственно из определения (*). Для доказательства свойства 2) заметим, что согласно свойству 1) для любого решения системы (1) верны тождества . Из этих тождеств в силу того, что через каждую точку проходит некоторое решение системы (1.1), и следуют тождества (1.3).
Приступим к доказательству свойства 3). Пусть - отражающая функция системы (1.1). Тогда для неё верно тождество (1.2). Продифференцируем это тождество по и воспользуемся тем, что - решение системы (1.1), и самим тождеством (1.2). Получим тождество
из которого в силу произвольности решения следует, что - решение системы (1.4). Начальное условие согласно свойству 2) так же выполняется.
Пусть некоторая функция удовлетворяет системе (1.4) и условию (1.5). Так как этой системе и этому условию удовлетворяет так же и отражающая функция, то из единственности решения задачи (1.4) - (1.5) функция должна совпадать с отражающей функцией. Свойство 3) доказано.
Основная лемма. Пусть правая часть системы (1.1) - периодична по , непрерывна и имеет непрерывные частные производные по переменным . Тогда отображение за период для системы (1.1) можно найти по формуле
,
и поэтому решение системы (1.1) будет - периодическим тогда и только тогда, когда есть решение недифференциальной системы
(1.6)
В качестве следствия этой леммы докажем следующее предположение. Пусть непрерывно дифференцируемая функция - периодична и нечетна по , т. е. и . Тогда всякое продолжение на отрезок решение системы (1.1) будет - периодическим и четным по .
Для доказательства достаточно заметить, что функция удовлетворяет уравнению (1.4) и условию (1.5). Поэтому она согласно свойству 3) является отражающей функцией рассматриваемой системы. Уравнение (1.6) в нашем случае вырождается в тождество, и ему удовлетворяет любое , для которого определено значение . Согласно основной лемме любое продолжимое на решение системы (1.1) будет - периодическим. Четность произвольного решения системы (1.1) следует из тождеств , справедливых в силу свойства 1) отражающей функции.
2. Простейшая система

Простейшей называют систему вида
(2.1),
где - отражающая функция этой системы.
Теорема: Пусть (2.2) простейшая система, тогда , где - отражающая функция системы (2.2).
Если система простейшая,
;
.
Замечание. и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.