На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 15.07.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


16
Министерство общего и профессионального образования Российской Федерации
Калужский Государственный Педагогический Университет
им. К.Э. Циолковского
Физико-математический факультет
Кафедра алгебры и информатики
Курсовая работа
Тема:
«Сечение многогранников»

Выполнил: студент IV курса
физико-математического факультета
Мосин Евгений Валерьевич.
Научный руководитель:
Булычев В.А.
Калуга 2006г.
Содержание
Введение
Глава I. Пространственные тела и их сечения
1.1 Точка, прямая и плоскость в пространстве. Векторы
1.2 Преобразования пространства
1.3 Пространственные тела
1.4 Поверхности второго порядка
Глава II. Изучение сечений пространственных тел
2.1 Методы построения сечений многогранников
2.2 Задание сечений пространственных тел
2.3 Построение сечений пространственных тел. Алгоритм
2.4 Исследование свойств сечения
Глава III. Визуализация
3.1 Способы визуализации трехмерного пространства
3.2 Перекрытие
3.3 Освещенность
Глава IV. Создание компьютерного приложения.
4.1 Постановка требований к реализуемому проекту
4.2 Разработка интерфейса программы
4.2.1 Окна проекций
4.2.2 Меню пользователя
4.2.3 Основные методы работы
4.2.4 Диалог просмотра сечения
Заключение
Приложение
Список литературы
Введение
Важнейшей задачей педагогической науки является совершенствование планирования процесса обучения в целом и повышение эффективности управления познавательной деятельностью учащихся.
Поиски оптимальных путей управления обучением вылились в создание новой системы учебной работы, названной программированным обучением, одними из составляющих которого являются наглядность и интерактивность обучающих программ. В настоящей курсовой работе мы рассмотрим возможность применения программированного обучения при изучении стереометрии, а именно сечения пространственных тел.
Но прежде всего необходимо отметить актуальность проблемы применения программированного (компьютерного) обучения.
В настоящее время наука и техника развиваются настолько быстро, что своевременное обобщение потока научной информации без применения кибернетических средств, представляет значительную трудность.
Не менее сложным является сообщение учащимся знаний, так как их объем из года в год увеличивается, тогда как сроки и методы обучения остаются неизменными. В связи с этим все большее число преподавателей приходит к выводу о недостаточности традиционных способов обучения и необходимости их совершенствования на основе новейших достижений науки и техники.
В школах уже появились компьютеры, но этого недостаточно. Самый лучший вариант - оснастить подобным оборудованием каждый кабинет и включить элементы работы на компьютере в учебные программы по всем предметам. Но для этого необходима техническая база. Особо надо отметить содержание самих обучающих программ, применение которых должно быть эффективным, а для этого необходимо разработать дидактический материал с учетом психолого-педагогических особенностей обучения геометрии.
В настоящее время возможно использовать элементы программированного обучения в курсе геометрии, так как большинство способов решения задач требует наглядного представления, которое можно реализовать с помощью обучающих программ. Для развития у школьников стереометрического (пространственного) представления, плоских чертежей, представляющих собой проективное изображение пространственных фигур, недостаточно необходимо создать инструмент, позволяющий интерактивно изучать стереометрию. В данном проекте мы остановимся на теме сечения пространственных тел.
Задачи проекта:
1. Изучение теоретического материала по теме проекта;
2. Создание компьютерного приложения позволяющего изучать сечения пространственных тел;
3. Оценка проделанной работы и выявление дальнейших путей развития данной темы.
Основная цель проекта: создание инструмента, позволяющего наглядно и интерактивно изучать пространственные тела и их сечения.
Промежуточные цели:
1. Разработать способ представления пространственных тел в памяти компьютера.
2. Разработать способ визуализации пространственных тел.
3. Создать алгоритм построения сечения пространственных тел.
4. Рассмотреть использование и реализацию интерактивности создаваемого приложения.
5. Разработка удобного, простого в обращении и достаточного полного интерфейса, создаваемого компьютерного приложения.
Программное обеспечение: среда программирования Delphi 7, текстовые редакторы Блокнот и MS Word, графический редактор Paint.
Глава I. Пространственные тела
1.1 Точка, прямая и плоскость в пространстве. Векторы
Понятие точка является определяющим понятием пространства, любая фигура пространства состоит из множества точек. Хранение в памяти компьютера информации о элементах пространства будем осуществлять с помощью хранения координат точек определяющих данный элемент пространства. Так для хранения информации о прямой достаточно всего двух различных точек принадлежащих этой прямой. По двум точкам задающим прямую можно составить каноническое уравнение прямой и далее оперировать этим уравнением:
, (1?)
где точки и принадлежат данной прямой. Или если использовать вектор т.е. , получим следующее уравнение прямой:
. (1??)
Аналогично прямой, плоскость определяется тремя точками:
, (2?)
где точки , , принадлежат данной плоскости из этой матрицы можно получить уравнение плоскости:
, (2??)
где коэффициенты ,,, определяются следующим способом:
;
;
;
.
Причем из этих формул полезно знать, что координатами вектора нормального к данной плоскости являются соответственно коэффициенты ,,. Этот вектор направлен в полупространство правого обхода точек.
Решая совместно уравнения (1??) и (2??) найдем координаты точки пересечения прямой и плоскости, при условии, что прямая пересекает плоскость. Пусть плоскость задана тремя точками: , , , а прямая задана двумя точками: и , тогда координаты точки пересечения находятся по формулам:
,
где , причем если , то ; (1x)
,
где , причем если , то ; (1y)
,
где , причем если , то . (1z)
В этих формулах координаты вектора для прямой вычисляется следующим образом: .
1.2 Преобразования пространства
Для реализации интерактивности изучения пространственных тел необходимо реализовать возможность перемещения, поворота и масштабирования, а для этого необходимо изменять координаты точек фигур по соответствующему закону. Рассмотрим три преобразования которые переводят каждую точку в точку :
1. Перемещение (параллельный перенос на вектор ).
(1p)
2. Поворот вокруг прямой на угол . Поворот будем осуществлять вокруг одной из осей координат.
а) вокруг оси OX:
(2px)
б) вокруг оси OY:
(2py)
в) вокруг оси OZ:
(2pz)
3. Масштабирование с коэффициентом .
(3p)
1.3 Пространственные тела
Как уже говорилось, в памяти компьютера пространственные тела будем хранить в виде координат точек определяющих эти тела. Рассмотрим далее, как хранить те или иные виды пространственных тел и рассмотрим основные способы создания фигур. При описании многогранников необходимо задание координат всех вершин многогранников, а также описание порядка обхода каждой грани. Удобно описывать обход граней почасовой стрелке наблюдая многогранник из вне, тогда нормальный вектор к грани, заданный тройкой следующих подряд вершин, будет направлен из многогранника. Это свойство удобно использовать при визуализации выпуклых многогранников, об этом будет рассказано позднее. С многогранниками все понятно, а как описывать поверхности второго порядка (поверхности вращения, конические поверхности, цилиндрические поверхности, эллипсоид, гиперболоид, параболоид). Их можно представить в виде многогранника с большим количеством граней, и чем больше количество граней, тем точнее приближение. Этот метод является универсальным, он позволяет описывать комбинированные пространственные тела, но не позволяет изучать алгебраические кривые, которые получаются при построении сечений. Приведем общую структуру файла, описывающего многогранник. Файл представляет собой обычный текстовый документ.
Количество вершин многогранника.
Координаты 1й вершины через пробел.
Координаты 2й вершины через пробел.
Количество граней многогранника.
Порядок обхода 1й грани через пробел.
Порядок обхода 2й грани через пробел.
Пример описания куба с ребром равным 2.
8
0 0 2
2 0 2
2 2 2
0 2 2
0 0 0
2 0 0
2 2 0
0 2 0
6
1 5 8 4
2 3 7 6
5 6 7 8
4 3 2 1
3 4 8 7
2 6 5 1
1.4 Поверхности второго порядка

Название.
Способ описания.
1.
Конус
Как пирамида с большим числом вершин, в основании которой лежит правильный многоугольник.
2.
Цилиндр
Как призма с большим числом вершин, основаниями которой являются правильные многоугольники.
3.
Сфера
Многогранник, описанный по принципу параллелей и меридианов.
4.
Тор
Совокупность косоугольных цилиндров.
Пример1: Методов получения координат точек сферы.
for iy:=0 to ny-1 do
for ix:=0 to nx do
begin
x:=r*sin(iy*pi/ny)*cos(2*ix*pi/nx);
y:=r*sin(iy*pi/ny)*sin(2*ix*pi/nx);
z:=r*cos(iy*pi/ny);
x:=r*sin((iy+1)*pi/ny)*cos(2*ix*pi/nx);
y:=r*sin((iy+1)*pi/ny)*sin(2*ix*pi/nx);
z:=r*cos((iy+1)*pi/ny);
end;
Глава II. Изучение сечений пространственных тел
2.1 Методы построения сечений многогранников
Геометрические задачи традиционно делятся на три типа:
1) на вычисление;
2) на доказательство;
3) на построение.
Решение любых стереометрических задач требует не только вычислительных и логических умений и навыков, но и умений изображать пространственные фигуры на плоскости (например, на листе бумаги, классной доске), что по сути своей тесно связано с темой «Геометрические построения на плоскости». Стереометрические задачи на вычисления и доказательство легко можно решать, используя правильный рисунок пространственной фигуры. При изучении тем «Параллельность прямых и плоскостей в пространстве», «Перпендикулярность прямых и плоскостей», «Углы между прямой и плоскостью, между двумя прямыми, между двумя плоскостями» и других тем прекрасным иллюстрационным материалом является решение позиционных и метрических задач на построение пространственных фигур и сечений этих фигур плоскостями. Основными методами построения сечений многогранников являются следующие методы:
1. Метод следов. Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.
2. Метод вспомогательных сечений. Этот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь в виду, что построения, выполняемые при использовании этого метода, зачастую получаются «скученными». Тем не менее, в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.
3. Комбинированный метод построения сечений. Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с методом следов и методом вспомогательных сечений.
4. Координатный метод построения сечений. Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.
Из всех перечисленных способов построения сечения наиболее приемлемым является координатный метод, так как он связан с большим объемом вычислений и имеет простой алгоритм реализации, что целесообразно реализовать с помощью ЭВМ. Достаточно знать координаты вершин каждой грани многогранника и три точки задающие плоскость сечения.
2.2 Задание сечений пространственных тел
Как уже говорилось, удобнее всего задавать плоскость сечения тремя точками, причем координаты этих точек должны быть известны или должны вычисляться. Рассмотрим возможные варианты задания точек плоскости сечения:
1) точка расположена вне многогранника;
2) точка находится внутри многогранника;
3) точка расположена в грани многогранника;
4) точка принадлежит ребру многогранника;
5) точка принадлежит диагонали многогранника;
6) точка совпадает с вершиной многогранника.
Условие задания секущей плоскости тремя точками будет выполняться не всегда и в этом случае придется вычислять уравнение плоскости сечения, используя другие методы. В данной работе рассматривается лишь способ задания тремя точками.
2.3 Построение сечений пространственных тел. Алгоритм
Метод построения сечения заключается в нахождении точек пересечения секущей плоскости с гранями многогранника, а вернее с ребрами многогранника. Проверка на пересечение секущей плоскости и ребра многогранника производится следующим образом:
1. Составление уравнения секущей плоскости по трем точкам;
2. Подстановка в уравнение координат концов ребра с целью проверки: расположены ли точки в разных полупространствах относительно плоскости сечения.
3. Нахождение точки пересечения ребра многогранника и плоскости сечения.
Для каждой грани записываются две точки, причем запись производится только для тех граней, где плоскость сечения пересекла два ребра. Далее используя полученные данные, строится многоугольник сечения следующим образом:
1. Берем первую пару точек и ищем следующую пару точек в которой повторяется одна из точек первой пары.
2. Найдя следующую пару проделываем для нее тоже самое, что и для первой пары, но исключаем из поиска первую пару.
3. Проделываем весь алгоритм для каждой пары, пока не останется одна ненайденная точка.
4. Полученная цепочка является последовательным описанием ребер многоугольника сечения.
Далее запоминаем полученный многоугольник, как новую грань многогранника.
2.4 Исследование свойств сечения
Перечислим некоторые свойства сечения (исходя из факта, что сечением является многоугольник).
1. Уравнение плоскости сечения.
2. Количество вершин многоугольника сечения.
3. Площадь многоугольника сечения.
4. Координаты вершин многоугольника сечения.
5. Двугранный угол между плоскостью сечения и гранями многогранника.
6. Углы при вершинах многоугольника сечения.
Некоторые из этих свойств реализованы в программе (1,2,3,4).
Пример: Нахождение площади сечения. Так как строятся сечения выпуклых многогранников, то многоугольник сечения будет тоже выпуклым, т.е. его площадь можно найти разбиением на треугольники (площадь сечения равна сумме площадей треугольников из которых оно составлено).
Глава III. Визуализация
3.1 Способы визуализации трехмерного пространства
Для визуализации используются два вида проекций: параллельные (аксонометрические) (на рисунке слева) и центральные (перспективные)
(на рисунке справа). При построении аксонометрической проекции пространственного тела его отдельные точки сносятся на плоскость проекции параллельным пучком лучей, а при построении центральной проекции - пучком лучей исходящих из одной точки, соответствующей положению глаз наблюдателя. Частным случаем аксонометрической проекции является проекция ортографическая, при построении которой плоскость проекции выравнивается параллельно одной из координатных плоскостей.
3.2 Перекрытие
Под перекрытием понимается тот факт, что невозможно одновременно видеть все грани многогранника и какие - то грани обязательно окажутся невидимыми. Проблема состоит в том, как узнать какие грани видны, а какие нет. В проекте мы рассматриваем только выпуклые многогранники, поэтому для реализации перекрытия используется тот факт, что нормальный вектор к каждой грани направлен извне. Т.е. если использовать ортографическую проекцию, то тот факт, что координатная составляющая (оси проекции) нормального вектора положительна, то грань видима, если отрицательна, то грань перекрыта.
3.3 Освещенность
Освещенность граней вычисляется путем, вычисления угла (синуса угла) между нормальным вектором к грани и осью ортографической проекции.
Глава IV. Создание компьютерного приложения
4.1 Постановка требований к реализуемому проекту
1. Простота использования.
2. Полнота необходимых инструментов и возможностей.
3. Интерактивность.
4. Быстрота работы.
5. Простота создания входного файла.
4.2 Разработка интерфейса программы
При разработке интерфейса программы уклон делался на стандартизацию меню и удобство использования. Также необходима функция встроенных подсказок (всплывающих и в строке состояния).
4.2.1 Окна проекций
В программе используются три окна проекции: вид сверху, вид слева, вид спереди, перспектива. Размер окон проекции изменяется путем перемещения цента разделителя. Также здесь показаны оси координат. Существует возможность включения координатной сетки.
4.2.2 Меню пользователя
Файл
Открыть (загрузка файла многогранника).
Сохранить (сохранение файла).
Выход (выход из программы).
Правка
Сброс (сброс всех измененных параметров).
Вид
Каркас (отображаются ребра многогранника).
Заливка (вывод граней, с расчетом их освещенности).
Обозначить (обозначить вершины многогранника).
Сетка (вывод сетки координат).
Инструменты
Выбрать (позволяет выбирать и перемещать точки задающие сечение).
Переместить (перемещение многогранника).
Повернуть (поворот многогранника).
Масштаб (масштаб окон проекций).
Стирка (позволяет отключать заливку выбранной грани).
Заливка (позволяет включить заливку выбранной грани).
Ограничить (ограничение манипулирования сценой по осям координат).
Цент поворота (изменение центра поворота).
Распространить (изменять координаты точек задающих сечение вместе с координатами многогранника).
Сечение
Построить (построение сечения путем задания трех точек плоскости сечения).
Удалить (удаление сечения).
Вид (настройка вида сечения).
Привязать (привязка выбранной точки сечения к элементам многогранника).
Просмотр (окно просмотра сечения).
Настройка
Цвет (вызов диалога изменения цветовой схемы)
4.2.3 Основные методы работы
Основной метод работы заключается в выборе инструмента, затем наведении курсора на объект действия и манипуляция с помощью нажатия клавиши мыши.
4.2.4 Диалог просмотра сечения
Вывод многоугольника сечения производится с помощью поворота плоскости сечения в положение параллельности плоскости XOY.
Заключение
В заключении данного проекта рассмотрим возможные пути дальнейшего развития проекта и его использования, а также оценку выполнения поставленной задачи и отметим полученные результаты. Поставленная перед началом работы цель: создание инструмента, позволяющего наглядно и интерактивно изучать пространственные тела и их сечения - реализована.
Создано приложение, которое позволяет загружать пространственные тела и манипулировать ими - это уже можно использовать при начальном изучении пространственных тел. Далее в программе реализована функция построения сечения пространственных фигур плоскостью, которая задается тремя точками, координаты которых можно изменять. Минусом программы является возможность изучения только выпуклых фигур и невозможность построения более одного сечения.
Пути дальнейшего развития проекта:
1. Построение нескольких сечений;
2. Возможность загрузки невыпуклых фигур;
3. Подбор задач решаемых с помощью созданного приложения;
4. Разработка методик применения программы в обучении;
5. Создание конструктора пространственных тел;
6. Создание интерактивного инструмента для построения сечений пространственных фигур аксиоматическим методом («Живая стереометрия»);
7. Создание обучающего модуля и методического сопровождения к нему;
8. Применение на практике.
Изучаемая в данной курсовой работе тема, должна быть изучена до конца, так как это может найти целесообразное и удачное применение на практике.
Приложение
Текст программы
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, Menus, ExtCtrls, jpeg, ToolWin, StdCtrls, ImgList;
type
Point=record x,y,z:real end; {координаты точки}
Vector=record x,y,z:real end; {координаты ветора}
type
TForm1 = class(TForm)
StatusBar1: TStatusBar; StatusBar2: TStatusBar; MainMenu1: TMainMenu;
N1: TMenuItem; N2: TMenuItem; N3: TMenuItem; N4: TMenuItem; N5: TMenuItem; N6: TMenuItem;
N20: TMenuItem; N21: TMenuItem; N22: TMenuItem; N18: TMenuItem; N25: TMenuItem; N30: TMenuItem;
N31: TMenuItem; N32: TMenuItem; N33: TMenuItem; OD1: TOpenDialog; SD1: TSaveDialog;
PTop: TPanel; ITop: TImage; PFront: TPanel; PLeft: TPanel; PPerspective: TPanel; IFront: TImage;
ILeft: TImage; IPerspective: TImage; GroupBox1: TGroupBox; Vertikal: TPanel; Horizontal: TPanel; Panel3: TPanel;
Centr: TPanel; ImList1: TImageList; N23: TMenuItem; ToolBar1: TToolBar;
ToolButton1: TToolButton; ToolButton2: TToolButton; ToolButton3: TToolButton; ToolButton4: TToolButton;
ToolButton5: TToolButton; ToolButton6: TToolButton; ToolButton7: TToolButton; ToolButton8: TToolButton;
ToolButton9: TToolButton; ToolButton10: TToolButton; ToolButton14: TToolButton; ToolButton19: TToolButton;
ToolButton11: TToolButton; ToolButton12: TToolButton; Label1: TLabel; ToolButton13: TToolButton;
N26: TMenuItem; N27: TMenuItem; N28: TMenuItem; N29: TMenuItem; N34: TMenuItem; N35: TMenuItem;
N36: TMenuItem; N37: TMenuItem; N38: TMenuItem; N39: TMenuItem; N40: TMenuItem; N41: TMenuItem;
N42: TMenuItem; N43: TMenuItem; N45: TMenuItem; N46: TMenuItem; N47: TMenuItem; N51: TMenuItem;
IntWiew: TMenuItem; N7: TMenuItem; N8: TMenuItem; N9: TMenuItem; N10: TMenuItem; N11: TMenuItem;
N12: TMenuItem; N13: TMenuItem; N14: TMenuItem; N15: TMenuItem; N16: TMenuItem; N17: TMenuItem;
N24: TMenuItem; N19: TMenuItem; Mag1: TMenuItem; Mag2: TMenuItem; Mag3: TMenuItem;
procedure N5Click(Sender: TObject);
procedure CentrMouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);
procedure CentrMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
procedure FormCreate(Sender: TObject); procedure FormResize(Sender: TObject); procedure N2Click(Sender: TObject);
procedure ITopClick(Sender: TObject); procedure IFrontClick(Sender: TObject); procedure ILeftClick(Sender: TObject);
procedure ITopMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
procedure IFrontMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
procedure ILeftMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
procedure N3Click(Sender: TObject); procedure N33Click(Sender: TObject); procedure ToolButton1Click(Sender: TObject); procedure ToolButton2Click(Sender: TObject); procedure FormPaint(Sender: TObject);
procedure ITopMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
procedure IFrontMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
procedure ILeftMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
procedure N25Click(Sender: TObject); procedure N21Click(Sender: TObject);
procedure N22Click(Sender: TObject); procedure N8Click(Sender: TObject);
procedure N16Click(Sender: TObject); procedure IntWiewClick(Sender: TObject);
procedure N27Click(Sender: TObject); procedure N28Click(Sender: TObject);
procedure N29Click(Sender: TObject); procedure N34Click(Sender: TObject);
procedure N36Click(Sender: TObject); procedure N37Click(Sender: TObject);
procedure N9Click(Sender: TObject); procedure N10Click(Sender: TObject);
procedure IPerspectiveClick(Sender: TObject);
procedure N41Click(Sender: TObject); procedure N14Click(Sender: TObject);
procedure N18Click(Sender: TObject); procedure ToolButton4Click(Sender: TObject);
procedure ToolButton5Click(Sender: TObject); procedure ToolButton6Click(Sender: TObject);
procedure ToolButton7Click(Sender: TObject); procedure ToolButton8Click(Sender: TObject);
procedure ToolButton9Click(Sender: TObject); procedure ToolButton12Click(Sender: TObject);
procedure ToolButton11Click(Sender: TObject); procedure ToolButton19Click(Sender: TObject);
procedure ToolButton13Click(Sender: TObject); procedure N24Click(Sender: TObject);
procedure N19Click(Sender: TObject); Function Normal (A,B,C:Point):Vector;
procedure Mag1Click(Sender: TObject); procedure Mag2Click(Sender: TObject);
procedure Mag3Click(Sender: TObject);
private
{ Private declarations }
Procedure DrawGrane;
public
{ Public declarations }
end;
const Gran=10000;{Максимум ганей}
Pointer=10000;{Максимум вершин}
Lok=0.00001;{Погрешность сечения}
SizeT=5;{Размер точек сечения}
Sumbol='A';{Обозначение точек}
type
TView=array [1..gran]of record Visible:boolean;{Флаг активного окна}
Paint:boolean;
BrushGr:boolean;{Флаг заливки грани}
PenRb:boolean;{Флаг отрисовки ребер}
Intersection:boolean;{Флаг наличия сечения}
ColorGr,ColorRb:TColor{Цвет: грани,ребра} end;
TMainVar=record Cx,Cy:integer; Mash:real;Net:boolean; end;
var
Form1: TForm1;
V:array[1..pointer]of Point;{координаты вершин}
E:array[1..gran,0..pointer]of integer;{грани [номер грани, номер вершины]}
Scene:array[1..4]of record G:TView; M:TMainVar; Active:boolean; end;
M,N:word;{количество граней, количество вершин}
X0,Y0,Num:integer;{координаты щелчка мыши}
ActivColor,ColorEder,ColorUnEder,ColorRebro,ColorIntersection,ColorPointIntersection,ColorNet:TColor;{Цвет: активного окна}
InterPoint:array[1..3]of Point;
Count:byte;
kl:integer;
A,B,C,D,P1,P2,P3:real;
PanelWindow:array[1..4]of TPanel;
WindowProection:array[1..4]of TImage;
NameWindows:array[1..4]of string=('Вид сверху','Вид спереди','Вид слева','Перспектива');{Название окон}
OsiX:array[1..4]of string=('x','x','y','x');
OsiY:array[1..4]of string=('z','y','x','z');
OsiZ:array[1..4]of string=('y','z','z','y');
Magnit:array[1..3]of TMenuItem;
MagPoint:array[1..3,1..2]of Point;
First:array[1..3]of boolean;
MPI:boolean;
implementation
uses Unit2,Unit3;
//Перевод вещественных координат в экранные
Function Ser(win:byte; T:Point; Main:TMainVar):TPoint;
var CopySer:Tpoint;
begin
case win of
1: begin CopySer.X:=round(Main.Cx+(T.x*Main.Mash));
CopySer.Y:=round(Main.Cy-(T.y*Main.Mash)) end;
2: begin CopySer.X:=round(Main.Cx+(T.x*Main.Mash));
CopySer.Y:=round(Main.Cy-(T.z*Main.Mash)) end;
3: begin CopySer.X:=round(Main.Cx+(T.y*Main.Mash));
CopySer.Y:=round(Main.Cy-(T.z*Main.Mash)) end;
4: begin CopySer.X:=round(Main.Cx+(T.x*Main.Mash));
CopySer.Y:=round(Main.Cy-(T.y*Main.Mash)) end;
end;
Ser:=CopySer
end;
Function UnSer(win:byte; X,Y:integer;Tx,Ty,Tz:real; Main:TMainVar):Point;
var CopyUnSer:Point;
begin
case win of
1: begin CopyUnSer.x:=(X-Main.Cx)/Main.Mash;
CopyUnSer.y:=(Main.Cy-Y)/Main.Mash; CopyUnSer.z:=Tz end;
2: begin CopyUnSer.x:=(X-Main.Cx)/Main.Mash;
CopyUnSer.y:=Ty; CopyUnSer.z:=(Main.Cy-Y)/Main.Mash end;
3: begin CopyUnSer.x:=Tx; CopyUnSer.y:=(X-Main.Cx)/Main.Mash;
CopyUnSer.z:=(Main.Cy-Y)/Main.Mash end;
end;
UnSer:=CopyUnSer
end;
Procedure TForm1.DrawGrane;
Procedure GranBrush(Main:TMainVar; win:byte; i:integer; P:TPenStyle; var Can:TImage);
var j:integer;
w:array of TPoint;
begin
SetLength(w,E[i,0]);
for j:=1 to E[i,0] do
w[j-1]:=Ser(win,V[E[i,j]],Main);
if Scene[win].G[i].BrushGr and Scene[win].G[i].Paint then
begin
Can.Canvas.Pen.Style:=psSolid;
Can.Canvas.Pen.Color:=Scene[win].G[i].ColorGr;
Can.Canvas.Brush.Color:=Scene[win].G[i].ColorGr;
Can.Canvas.Polygon(w);
end;
if Scene[win].G[i].PenRb then
begin
Can.Canvas.Pen.Style:=P;
Can.Canvas.Pen.Color:=Scene[win].G[i].ColorRb;
Can.Canvas.Brush.Style:=bsClear;
Can.Canvas.MoveTo(w[0].X,w[0].Y);
for j:=1 to E[i,0]-1 do
Can.Canvas.LineTo(w[j].X,w[j].Y);
Can.Canvas.LineTo(w[0].X,w[0].Y);
end;
end;
//* Оси координат
Procedure LineOs(i:byte;var Can:TImage);
var j,k,a,b:integer;
begin
Can.Canvas.Pen.Color:=ColorNet;
a:=round(Can.Width/Scene[i].M.Mash) div 2;
b:=round(Can.Height/Scene[i].M.Mash) div 2;
for j:=-a to a do
begin
Can.Canvas.MoveTo(Scene[i].M.Cx+round(j*Scene[i].M.Mash),0);
Can.Canvas.LineTo(Scene[i].M.Cx+round(j*Scene[i].M.Mash),Can.Height);
end;
for j:=-b to b do
begin
Can.Canvas.MoveTo(0,Scene[i].M.Cy+round(j*Scene[i].M.Mash));
Can.Canvas.LineTo(Can.Width,Scene[i].M.Cy+round(j*Scene[i].M.Mash));
end;
Can.Canvas.Pen.Color:=clBlack;
Can.Canvas.MoveTo(Scene[i].M.Cx,0);
Can.Canvas.LineTo(Scene[i].M.Cx,Can.Height);
Can.Canvas.MoveTo(0,Scene[i].M.Cy);
Can.Canvas.LineTo(Can.Width,Scene[i].M.Cy);
end;
// Система координат
Procedure InpOboz(i,k:integer);
var j:integer;
A:TPoint;
s:string;
begin
WindowProection[k].Canvas.Pen.Color:=clBlack;
WindowProection[k].Canvas.Brush.Style:=bsClear;
WindowProection[k].Canvas.Font.Height:=8;
for j:=1 to E[i,0] do
begin
s:='';
A:=Ser(k,V[E[i,j]],Scene[k].M);
if Form1.N24.Checked then
s:=s+Sumbol+inttostr(E[i,j]);
if Form1.N19.Checked then
s:=s+'('+floattostrf(V[E[i,j]].x,ffGeneral,3,5)+';'+floattostrf(V[E[i,j]].y,ffGeneral,3,5)+';'+floattostrf(V[E[i,j]].z,ffGeneral,3,5)+')';
WindowProection[k].Canvas.TextOut(A.X,A.Y,s);
end;
end;
Procedure InpOsi(k:byte);
var i:integer;
begin
WindowProection[k].Canvas.Pen.Color:=clBlack;
WindowProection[k].Canvas.Brush.Style:=bsClear;
WindowProection[k].Canvas.MoveTo(10,WindowProection[k].Height-10);
WindowProection[k].Canvas.LineTo(10,WindowProection[k].Height-40);
WindowProection[k].Canvas.MoveTo(10,WindowProection[k].Height-10);
WindowProection[k].Canvas.LineTo(40,WindowProection[k].Height-10);
WindowProection[k].Canvas.Font.Height:=8;
WindowProection[k].Canvas.Font.Color:=clBlue;
WindowProection[k].Canvas.TextOut(12,WindowProection[k].Height-50,OsiX[K]);
WindowProection[k].Canvas.TextOut(12,WindowProection[k].Height-23,OsiY[K]);
WindowProection[k].Canvas.TextOut(40,WindowProection[k].Height-20,OsiZ[K]);
end;
var i,j:integer;
begin
for j:=1 to 4 do
begin
if Scene[j].M.Net then
LineOs(j,WindowProection[j]);
if Form1.IntWiew.Enabled and Form1.N46.Checked then
GranBrush(Scene[j].M,j,M+1,psSolid,WindowProection[j]);
for i:=1 to M do
if (not Scene[j].G[i].Visible) then
GranBrush(Scene[j].M,j,i,psDot,WindowProection[j]);
if Form1.IntWiew.Enabled and Form1.N45.Checked then
GranBrush(Scene[j].M,j,M+1,psSolid,WindowProection[j]);
for i:=1 to M do
if Scene[j].G[i].Visible then
GranBrush(Scene[j].M,j,i,psSolid,WindowProection[j]);
if Form1.N24.Checked or Form1.N19.Checked then
for i:=1 to M do
if Scene[j].G[i].Visible then
InpOboz(i,j);
WindowProection[j].Canvas.Brush.Style:=bsClear;
WindowProection[j].Canvas.Font.Height:=8;
WindowProection[j].Canvas.Font.Color:=clBlack;
WindowProection[j].Canvas.TextOut(1,1,NameWindows[j]);
InpOsi(j);
end;
end;
{$R *.dfm}
//* Активация окна
Procedure ActivWindowProection(i:byte);
var j:byte;
begin
for j:=1 to 3 do
begin
PanelWindow[j].Color:=clBtnFace;
Scene[j].Active:=false
end;
PanelWindow[i].Color:=ActivColor;
Scene[i].Active:=true
end;
//* Полуплоскость
Function SelectGran(i,x,y:integer):integer;
Function Poluploscost(x1,y1,x2,y2,x,y:real):boolean;
begin
Poluploscost:=((x-x1)*(y2-y1)-((y-y1)*(x2-x1)))>0
end;
var j,k,l,rez:integer;
Inter:boolean;
begin
rez:=0; Inter:=true;
for k:=1 to M do
if Scene[i].G[k].Visible then
begin
for j:=1 to E[k,0]-1 do
case i of
1: if Poluploscost(V[E[k,j]].x,V[E[k,j]].y,V[E[k,j+1]].x,V[E[k,j+1]].y,(X-Scene[i].M.Cx)/Scene[i].M.Mash,(Scene[i].M.Cy-Y)/Scene[i].M.Mash) then Inter:=false;
2: if not Poluploscost(V[E[k,j]].x,V[E[k,j]].z,V[E[k,j+1]].x,V[E[k,j+1]].z,(X-Scene[i].M.Cx)/Scene[i].M.Mash,(Scene[i].M.Cy-Y)/Scene[i].M.Mash) then Inter:=false;
3: if Poluploscost(V[E[k,j]].y,V[E[k,j]].z,V[E[k,j+1]].y,V[E[k,j+1]].z,(X-Scene[i].M.Cx)/Scene[i].M.Mash,(Scene[i].M.Cy-Y)/Scene[i].M.Mash) then Inter:=false;
end;
if Inter then
case i of
1: if Poluploscost(V[E[k,E[k,0]]].x,V[E[k,E[k,0]]].y,V[E[k,1]].x,V[E[k,1]].y,(X-Scene[i].M.Cx)/Scene[i].M.Mash,(Scene[i].M.Cy-Y)/Scene[i].M.Mash) then Inter:=false;
2: if not Poluploscost(V[E[k,E[k,0]]].x,V[E[k,E[k,0]]].z,V[E[k,1]].x,V[E[k,1]].z,(X-Scene[i].M.Cx)/Scene[i].M.Mash,(Scene[i].M.Cy-Y)/Scene[i].M.Mash) then Inter:=false;
3: if Poluploscost(V[E[k,E[k,0]]].y,V[E[k,E[k,0]]].z,V[E[k,1]].y,V[E[k,1]].z,(X-Scene[i].M.Cx)/Scene[i].M.Mash,(Scene[i].M.Cy-Y)/Scene[i].M.Mash) then Inter:=false;
end;
if Inter then
begin
rez:=k;
Break;
end
else
begin
rez:=0;
Inter:=true;
end;
end;
SelectGran:=rez;
end;
//* Выбор точек сечения
Procedure MoveP(win,j,X,Y:integer);
Procedure PNormal(P1,P2:Point;var M:Point);
var i:integer;
Li,No:Vector;
O:Point;
Q,P1O,P2O:real;
begin
Li.x:=P1.x-P2.x;
Li.y:=P1.y-P2.y;
Li.z:=P1.z-P2.z;
No.x:=M.x-P1.x;
No.y:=M.y-P1.y;
No.z:=M.z-P1.z;
Q:=sqr(Li.x)+sqr(Li.y)+sqr(Li.z);
O.x:=(Li.x*((Li.y*No.y)+(Li.z*No.z)+(Li.x*M.x))+(P1.x*(sqr(Li.y)+sqr(Li.z))))/Q;
O.y:=(Li.y*((Li.x*No.x)+(Li.z*No.z)+(Li.y*M.x))+(P1.y*(sqr(Li.x)+sqr(Li.z))))/Q;
O.z:=(Li.z*((Li.x*No.x)+(Li.y*No.y)+(Li.z*M.x))+(P1.z*(sqr(Li.x)+sqr(Li.y))))/Q;
P1O:=sqrt(sqr(O.x-P1.x)+sqr(O.y-P1.y)+sqr(O.z-P1.z));
P2O:=sqrt(sqr(O.x-P2.x)+sqr(O.y-P2.y)+sqr(O.z-P2.z));
if (P1O<>0) and (P2O<>0) then
if (sqrt(Q)/P1O<1)or(sqrt(Q)/P2O<1) then
if P1O/P2O<1 then O:=P1 else O:=P2;
M:=O;
end;
begin
InterPoint[j]:=UnSer(win,X,Y,InterPoint[j].x,InterPoint[j].y,InterPoint[j].z,Scene[win].M);
if Magnit[j].Checked and (not first[j]) then
PNormal(MagPoint[j,1],MagPoint[j,2], InterPoint[j]);
Form1.StatusBar2.Panels[0].Text:='X= '+floattostrf(InterPoint[j].x,ffGeneral,3,5);
Form1.StatusBar2.Panels[ и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.