На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Основные положения глобальной тектоники

Информация:

Тип работы: реферат. Добавлен: 26.08.2012. Сдан: 2012. Страниц: 11. Уникальность по antiplagiat.ru: < 30%

Описание (план):


     Федеральное агентство морского и речного  транспорта РФ
     ГФОУ  ВПО ВГАВТ 

     Кафедра теории корабля и экологии судоходства 

     Реферат
                                                                 на тему:
Основные  положения глобальной тектоники 
 
 
 

Выполнил: Краснова Елизавета Владимировна
Гр. У - 21
Проверила доцент кафедры
теории корабля и экологии
судоходства: Плотникова В. Н. 

г. Нижний Новгород
     2010 

     Содержание: 

    Введение…………………………………………………………...……3
    Основные положения…………………………………………………4
    Современное состояние тектоники плит…………………………...9
    Заключение……………………………………………………………17
    Список используемых источников………………………………...18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Введение 

     Много лет назад отец-геолог подвел своего маленького сына к карте мира и  спросил, что будет, если береговую  линию Америки придвинуть к побережью  Европы и Африки? Мальчик не поленился  и, вырезав соответствующие части  из физико-географического атласа, с удивлением обнаружил, что западное побережье Атлантики совпало  с восточным в пределах, так  сказать, ошибки эксперимента.
     Эта история не прошла для мальчика бесследно, он стал геологом и поклонником Альфреда Вегенера, отставного офицера германской армии, а также метеоролога, полярника, и геолога, который в 1915 году создал концепцию дрейфа континентов.
     Свою  лепту в возрождение концепции  дрейфа внесли и высокие технологии: именно компьютерное моделирование  в середине 1960-х годов показало хорошее совпадение границ континентальных  масс не только для Циркум-Атлантики, но и для ряда остальных материков - Восточной Африки и Индостана, Австралии  и Антарктиды.
     В результате в конце 60-х появилась  концепция тектоники плит, или  новой глобальной тектоники.
     В своей работе я хочу определить значение и роль основных положений тектоники. 
 
 
 
 
 
 
 
 

     Основные  положения
     Впервые идея о движении блоков коры была высказана  в теории дрейфа континентов , предложенной Альфредом Вегенером в 1920-х годах . Эта теория была первоначально  отвергнута. Возрождение идеи о движениях  в твёрдой оболочке Земли («мобилизм») произошло в 1960-х годах , когда  в результате исследований рельефа  и геологии океанического дна  были получены данные, свидетельствующие  о процессах расширения (спрединга) океанической коры и пододвигания одних  частей коры под другие (субдукции). Объединение этих представлений  со старой теорией дрейфа материков  породило современную теорию тектоники  плит, которая вскоре стала общепринятой концепцией в науках о Земле .
     Тектоника плит — современная геологическая теория о движении литосферы . Она утверждает, что земная кора состоит из относительно целостных блоков — плит , которые находятся в постоянном движении друг относительно друга. При этом в зонах расширения ( срединно-океанических хребтах и континентальных рифтах) в результате спрединга ( англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора , а старая поглощается в зонах субдукции . Теория объясняет землетрясения , вулканическую деятельность и горообразование , большая часть которых приурочена к границам плит.
     Согласно  этой концепции, земная кора разбита  на несколько огромных литосферных  плит, которые постоянно двигаются  и продуцируют землетрясения. Первоначально  было выделено несколько литосферных  плит: Евразийская, Африканская, Северо – и Южноамериканская, Австралийская, Антарктическая, Тихоокеанская. Все  они, кроме Тихоокеанской, чисто  океанической, включают в себя части  как с континентальной, так и  океанической корой. И дрейф континентов  в рамках этой концепции - не более  чем их пассивное перемещение  вместе с литосферными плитами.
     В основе глобальной тектоники лежит  представление о литосферных  плитах, фрагментах земной поверхности, рассматриваемых, как абсолютно  жесткие тела, перемещающиеся словно по воздушной подушке по слою разуплотненной мантии - астеносфере, со скоростью  от 1-2 до 10-12 см в год. В большинстве своем они включают как континентальные массы с корой, условно называемой «гранитной», так и участки с корой океанической, условно называемой «базальтовой» и образованной породами с низким содержанием кремнезема.
     Учёным  совершенно не ясно, куда движутся и  движутся ли материки вообще, а если движутся, то за счёт действия каких  сил и источников энергии. Широко распространённое предположение о  том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения  идут вразрез с основными положениями  многих физических законов, экспериментальных  данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного  механизма движения вещества, одинаково  приемлемых для условий недр звёзд, планет и их спутников, до сих пор  не найдено.
     В срединно-океанических хребтах образуется новая разогретая океаническая кора, которая, остывая, снова погружается  в недра мантии и рассеивает тепловую энергию, идущую на перемещение плит земной коры.
     Гигантские  геологические процессы, такие как  вздымание горных хребтов, мощные землетрясения, образование глубоководных впадин, извержение вулканов, — все они, в конце концов, порождаются движением  плит земной коры, при котором происходит постепенное охлаждение мантии нашей  планеты.
     В теории тектоники плит ключевое положение  занимает понятие геодинамической  обстановки — характерной геологической  структуры с определённым соотношением плит. В одной и той же геодинамической  обстановке происходят однотипные тектонические, магматические, сейсмические и геохимические процессы.
     Основой теоретической геологии начала XX века была контракционная гипотеза . Земля  остывает подобно испечённому яблоку, и на ней появляются морщины в  виде горных хребтов. Развивала эти  идеи теория геосинклиналей , созданная  на основании изучения складчатых сооружений.
     Эта теория была сформулирована Дж. Дэна, который  добавил к контракционной гипотезе принцип изостазии. Согласно этой концепции  Земля состоит из гранитов ( континенты ) и базальтов (океаны). При сжатии Земли в океанах - впадинах возникают  тангенциальные силы, которые давят  на континенты.
     Последние вздымаются в горные хребты, а затем  разрушаются. Материал, который получается в результате разрушения, откладывается  во впадинах.
     Против  этой схемы выступил немецкий учёный - метеоролог Альфред Вегенер 6 января 1912 года он выступил на собрании Немецкого  геологического общества с докладом о дрейфе материков.
     Исходной  посылкой к созданию теории стало  совпадение очертаний западного  побережья Африки и восточного Южной  Америки. Если эти континенты сдвинуть, то они совпадают, как если бы образовались в результате раскола одного праматерика.
     Вегенер не удовлетворился совпадением очертаний  побережий (которые неоднократно замечались до него), а стал интенсивно искать доказательства теории.
     Для этого он изучил геологию побережьев обоих континентов и нашёл  множество схожих геологических  комплексов, которые совпадали при  совмещении, так же, как и береговая  линия.
     Другим  направлением доказательства теории стали палеоклиматические реконструкции, палеонтологические и биогеографические аргументы. Многие животные и растения имеют ограниченные ареалы, по обе стороны Атлантического океана.
       Они очень схожи, но разделены  многокилометровым водным пространством,  и трудно предположить, что они  пересекли океан .
     Кроме того, Вегенер стал искать геофизические  и геодезические доказательства. Однако, в то время уровень этих наук был явно не достаточен, чтобы  зафиксировать современное движение континентов. В 1930 году Вегенер погиб  во время экспедиции в Гренландии, но перед смертью уже знал, что  научное сообщество не приняло его  теорию.
     Изначально  теория дрейфа материков была принята научным сообществом благосклонно, но в 1922 году она подверглась жёсткой критике со стороны сразу нескольких известных специалистов. Главным аргументом против теории стал вопрос о силе , которая двигает плиты. Вегенер полагал, что континенты двигаются по базальтам океанического дна, но для этого требовалось огромное усилие, и источника этой силы никто назвать не мог.
     В качестве источника движения плит предлагались сила Кориолиса, приливные явления  и некоторые другие, однако простейшие расчёты показывали, что всех их абсолютно недостаточно для перемещения  огромных континентальных блоков.
     Критики теории Вегенера поставили во главу  угла вопрос о силе, двигающей континенты, и проигнорировали всё множество  фактов, безусловно подтверждавших теорию. По сути, они нашли единственный вопрос, в котором новая концепция  была бессильна, и без конструктивной критики отвергли основные доказательства.
     После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, и подавляющее  большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах. Для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся  в морскую пучину. Это было ещё  одно рождение легенды об Атлантиде . Стоит отметить, что некоторые учёные не признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков.
     Так дю Туа ( Alexander du Toit ) объяснял образование гималайских гор столкновением Индостана и Евразийской плиты.
     Вялотекущая борьба фиксистов, как назвали сторонников  отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что они всё таки двигаются, с  новой силой разгорелась в 1960-х  годах, когда в результате изучения дна океанов были найдены ключи  к понимаю «машины» под названием  Земля.
     К началу 1960-х годов была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты , которые возвышаются на 1,5—2 км над абиссальными равнинами , покрытыми осадками. Эти данные позволили Р. Дицу и Г. Хессу в 1962 — 1963 годах выдвинуть гипотезу спрединга . Согласно этой гипотезе, в  мантии происходит конвекция со скоростью  около 1 см/год. Восходящие ветви конвекционных  ячеек выносят под срединно-океаническими  хребтами мантийный материал, который  обновляет океаническое дно в  осевой части хребта каждые 300—400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно «впаяны» в литосферные  плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же — устойчивые.
     Возраст дна океанов. В 1963 году гипотеза спрединга получает мощную поддержку в связи с открытием полосовых магнитных аномалий океанического дна. Они были интерпретированы, как запись инверсий магнитного поля Земли, зафиксированная в намагниченности базальтов дна океана.
     После этого тектоника плит начала победное шествие в науках о Земле. Всё  больше учёных понимали, что, чем тратить  время на защиту концепции фиксизма, лучше взглянуть на планету с  точки зрения новой теории и, наконец-то, начать давать реальные объяснения сложнейшим земным процессам. Сейчас тектоника плит подтверждена прямыми измерениями скорости плит методом интерферометрии излучения от далёких квазаров и измерениями с помощью спутниковых навигационных систем GPS . Результаты многолетних исследований полностью подтвердили основные положения теории тектоники плит.  

     Современное состояние тектоники  плит
     За  прошедшие десятилетия тектоника  плит значительно изменила свои основные положения. Ныне их можно сформулировать следующим образом:
     Верхняя часть твёрдой Земли делится  на хрупкую литосферу и пластичную астеносферу . Конвекция в астеносфере  — главная причина движения плит.
     Литосфера делится на 8 крупных плит, десятки  средних плит и множество мелких. Мелкие плиты расположены в поясах между крупными плитами. Сейсмическая, тектоническая и магматическая  активность сосредоточена на границах плит.
     Литосферные плиты в первом приближении описываются  как твёрдые тела , и их движение подчиняется теореме вращения Эйлера .
     Существует  три основных типа относительных  перемещений плит расхождение (дивергенция), выраженное рифтингом и спредингом; схождение (конвергенция) выраженное субдукцией и коллизией; сдвиговые перемещения  по трансформным разломам.
     Спрединг  в океанах компенсируется субдукцией и коллизией по их периферии, причём радиус и объём Земли постоянны  с точностью до термического сжатия планеты (в любом случае средняя  температура недр Земли медленно, в течение миллиардов лет, уменьшается). Постоянство размеров Земли непрерывно опровергается, но попытки доказательства существенных изменений размеров планеты  недостаточно обоснованы.
     Перемещение литосферных плит вызвано их увлечением конвективными течениями в астеносфере.
     Существует  два принципиально разных вида земной коры — кора континентальная (более  древняя) и кора океаническая (не старше 200 миллионов лет). Некоторые литосферные  плиты сложены исключительно  океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят  из блока континентальной коры, впаянного  в кору океаническую.
     Более 90 % поверхности Земли покрыто 8 крупнейшими  литосферными плитами:
    Австралийская плита
    Антарктическая плита
    Африканская плита
    Евразийская плита
    Индостанская плита
    Тихоокеанская плита
    Северо-Американская плита
    Южно-Американская плита
     Среди плит среднего размера можно выделить Аравийский субконтинент, и плиты  Кокос и Хуан де Фука, остатки  огромной плиты Фаралон, слагавшей  значительную часть дна Тихого океана, но ныне исчезнувшую в зоне субдукции  под Северной и Южной Америками.
     Сейчас  уже нет сомнений, что горизонтальное движение плит происходит за счёт мантийных  теплогравитационных течений — конвекции. Источником энергии для этих течений служит разность температуры центральных областей Земли, которые имеют очень высокую температуру (по оценкам, температура ядра составляет порядка 5000 °С) и температуры на ее поверхности. Нагретые в центральных зонах Земли породы расширяются (см. термическое расширение), плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжелым массам, уже отдавшим часть тепла земной коре. Этот процесс переноса тепла (следствие всплывания легких - горячих масс и погружения тяжелых - более холодных масс) идет непрерывно, в результате чего возникают конвективные потоки. Эти потоки — течения замыкаются сами на себя и образуют устойчивые конвективные ячейки, согласующиеся по направлениям потоков с соседними ячейками. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения увлекает плиты в горизонтальном же направлении с огромной силой за счет огромной вязкости мантийного вещества. Если бы мантия была совершенно жидкой - вязкость пластичной мантии под корой была бы малой (скажем, как у воды или около того), то через слой такого вещества с малой вязкостью не могли бы проходить поперечные сейсмические волны.
     А земная кора увлекалась бы потоком  такого вещества со сравнительно малой  силой. Но, благодаря высокому давлению, при относительно низких температурах, господствующих на поверхности Мохо и ниже, вязкость мантийного вещества здесь очень велика (так что  в масштабе лет вещество манетии  Земли жидкое (текучее), а в масштабе секунд - твердое). Движущей силой течения  вязкого мантийного вещества непосредственно  под корой является перепад высот  свободной поверхности мантии между  областью подъема и областью опускания  конвекционного потока. Этот перепад  высот, можно сказать, величина отклонения от изостазии, образуется из-за разной плотности чуть более горячего (в  восходящей части) и чуть более холодного  вещества, поскольку вес более  и менее горячего столбов в  равновесии одинаков (при разной плотности!). На самом же деле, положение свободной  поверхности не может быть измерено, оно может быть только вычислено (высота поверхности Мохо + высота столба мантийного вещества, по весу эквивалентного слою более легкой коры над поверхностью Мохо).
     Эта же движущая сила (перепада высот) определяет степень упругого горизонтального  сжатия коры силой вязкого трения потока о земную кору. Величина этого  сжатия мала в области восхождения  мантийного потока и увеличивается  по мере приближения к месту опускания  потока (за счет передачи напряжения сжатия через неподвижную твердую кору по направлению от места подъема к месту спуска потока). Над опускающимся потоком сила сжатия в коре так велика, что время от времени превышается прочность коры (в области наименьшей прочности и наибольшего напряжения), происходит неупругая (пластическая, хрупкая) деформация коры — землетрясение. При этом из места деформации коры выдавливаются целые горные цепи, например, Гималаи (за много шагов).
     При пластичекой (хрупкой) деформации очень  быстро (в темпе смещения коры при  землетрясении) уменьшается и напряжение в ней - сила сжатия в очаге землетрясения  и его окрестностях. Но сразу же по окончании неупругой деформации продолжается прерванное землетрясением очень медленное нарастание напряжения (упругой деформации) за счет очень  медленного же движения вязкого мантийного потока, начиная цикл подготовки следующего землетрясения.
     Таким образом, движение плит — следствие  переноса тепла из центральных зон  Земли очень вязкой магмой. При  этом часть тепловой энергии превращается в механическую работу по преодолению  сил трения, а часть, пройдя через  земную кору, излучается в окружающее пространство. Так что наша планета  в некотором смысле представляет собой тепловой двигатель.
     Относительно  причины высокой температуры  недр Земли существует несколько  гипотез. В начале XX века была популярна  гипотеза радиоактивной природы  этой энергии.
     Казалось, она подтверждалась оценками состава  верхней коры, которые показали весьма значительные концентрации урана, калия  и других радиоактивных элементов, но впоследствии выяснилось, что содержания радиоактивных элементов в породах  земной коры совершенно недостаточно для обеспечения наблюдаемого потока глубинного тепла.
     А содержание радиоактивных элементов  в подкорковом веществе (по составу  близком к базальтам океанического  дна), можно сказать, ничтожно. Однако это не исключает достаточно высокого содержания тяжелых радиоактивных элементов, генерирующих тепло, в центральных зонах планеты.
     Другая  модель объясняет нагрев химической дифференциацией Земли . Первоначально  планета была смесью силикатного  и металлического веществ. Но одновременно с образованием планеты началась её дифференциация на отдельные оболочки. Более плотная металлическая  часть устремилась к центру планеты, а силикаты концентрировались в  верхних оболочках. При этом потенциальная  энергия системы уменьшалась  и превращалась в тепловую энергию.
     Другие  исследователи полагают, что разогрев планеты произошёл в результате аккреции при ударах метеоритов о  поверхность зарождающегося небесного  тела.
     Это вряд ли — при аккреции тепло  выделялось практически на поверхности, откуда оно легко уходило в  космос, а не в центральные области  Земли.
     Сила  вязкого трения, возникающая вследствие тепловой конвекции, играет определяющую роль в движениях плит, но кроме  неё на плиты действуют и другие, меньшие по величине, но также важные силы. Это — силы Архимеда, обеспечивающие плавание более легкой коры на поверхности  более тяжелой мантии. Приливные  силы, обусловленные гравитационным воздействием Луны и Солнца (различием  их гравитационного воздействия  на разноудаленные от них точки Земли).
     А также силы, возникающие вследствие изменения атмосферного давления на различные участки земной поверхности - силы атмосферного давления достаточно часто изменяются на 3%, что эквивалентно сплошному слою воды толщиной 0.3 м (или гранита толщиной не менее 10 см). Причем это изменение может происходить в зоне шириной в сотни километров, тогда как изменение приливных сил происходит более плавно - на расстояниях в тысячи километров.
     Сейчас  тектонику уже нельзя рассматривать  как чисто геологическую концепцию. Она играет ключевую роль во всех науках о Земле, в ней выделилось несколько  методических подходов с разными  базовыми понятиями и принципами.
     С точки зрения кинематического подхода, движения плит можно описать геометрическими  законами перемещения фигур на сфере.
     Земля рассматривается как мозаика  плит разного размера, перемещающихся относительно друг друга и самой планеты.
     Палеомагнитные  данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени.
     Обобщение данных по разным плитам привело к  реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих  точек, сделало возможным определить абсолютные перемещения плит и историю  движения магнитных полюсов Земли.
     Теплофизический подход рассматривает Землю как  тепловую машину , в которой тепловая энергия частично превращается в  механическую. В рамках этого подхода  движение вещества во внутренних слоях  Земли моделируется как поток  вязкой жидкости, описываемый уравнениями  Навье — Стокса. Мантийная конвекция  сопровождается фазовыми переходами и  химическими реакциями, которые  играют определяющую роль в структуре  мантийных течений. Основываясь  на данных геофизического зондирования, результатах теплофизических экспериментов  и аналитических и численных  расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для  понимания строения самых глубоких частей Земли — нижней мантии и  ядра, которые недоступны для непосредственного  изучения, но, несомненно, оказывают  огромное влияние на процессы, идущие на поверхности планеты.
     Геохимический подход. Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между  различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным  особенностям можно определить геодинамическую  обстановку, в которой образовалась порода.
     Исторический  подход. В смысле истории планеты  Земля, тектоника плит — это история  соединяющихся и раскалывающихся  континентов, рождения и угасания вулканических  цепей, появления и закрытия океанов  и морей. Сейчас для крупных блоков коры история перемещений установлена  с большой детальностью и за значительный промежуток времени, но для небольших  плит методические трудности много  большие. Самые сложные геодинамические  процессы происходят в зонах столкновения плит, где образуются горные цепи, сложенные  множеством мелких разнородных блоков — террейнов. При изучении Скалистых  гор зародилось особое направление  геологических исследований — террейновый  анализ, который вобрал в себя комплекс методов, по выделению террейнов  и реконструкции их истории.
     Восстановление  прошлых перемещений плит — один из основных предметов геологических  исследований. С различной степенью детальности положение континентов  и блоков, из которых они сформировались, реконструировано вплоть до архея.
     Из  анализа перемещений континентов  было сделано эмпирическое наблюдение, что континенты каждые 400—600 млн. лет  собираются в огромный материк, содержащий в себе почти всю континентальную  кору — суперконтинент. Современные  континенты образовались 200—150 млн. лет  назад, в результате раскола суперконтинента  Пангеи. Сейчас континенты находятся  на этапе почти максимального  разъединения. Атлантический океан  расширяется, а Тихий океан закрывается. Индостан движется на север и сминает  Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Заключение 

     Значение  тектоники плит. Тектоника плит сыграла  в науках о Земле роль, сравнимую  с гелиоцентрической концепцией в астрономии, или открытием ДНК  в генетике. До принятия теории тектоники  плит, науки о Земле носили описательный характер. Они достигли высокого уровня совершенства в описании природных  объектов, но редко могли объяснить  причины процессов. В разных разделах геологии могли доминировать противоположные  концепции. Тектоника плит связала  различные науки о Земле, дала им предсказательную силу.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Список  используемых источников 

1. Мейерхофф  А., Мейерхофф Г. Новая глобальная  тектоника - основные противоречия. - В кн.: Новая глобальная тектоника. - М.: Мир, 1974 (1972),
2. Максимов  Н. Ледоколы земной геологии.
3.  Трубицын  В, Рыков В. Мантийная конвекция  и глобальная тектоника Земли.
4.  Орленок  В. Основы геофизики.
5. Зоненшайн  Л. П., Проблемы глобальной тектоники. // Природа - 1972, -№11.
6. Хаин  В.Е. Тектоника литосферных плит - достижения и нерешённые проблемы. - Изв. АН СССР, сер. геол., 1984, №  12,
7. Драновский  Я.А. Спрединг и субдукция: миф  или реальность? -Бюлл.Моск.о-ва испытателей  природы. Отд. геол. 1987.


и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.