На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Предмет микробиологии и его значение для с/х производства

Информация:

Тип работы: курсовая работа. Добавлен: 28.08.2012. Сдан: 2012. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


      Предмет микробиологии  и его значение для с/х производства
1. Предмет микробиологии и его значение для с/х производства
Микробиология (от микро... и биология), наука, изучающая микроорганизмы — бактерии, микоплазмы, актиномицеты, дрожжи, микроскопические грибы и водоросли — их систематику, морфологию, физиологию, биохимию, наследственность и изменчивость, распространение и роль в круговороте веществ в природе, практическое значение.
Развитие  микробиологии и потребности  практики привели к обособлению  ряда разделов микробиологии в самостоятельные  научные дисциплины. Общая микробиологии изучает фундаментальные закономерности биологии микроорганизмов. Знание основ общей микробиологии необходимо при работе в любом из специальных разделов микробиологии.
Сельскохозяйственная  микробиология выясняет состав почвенной микрофлоры, её роль в круговороте веществ в почве, а также её значение для структуры и плодородия почвы, влияние обработки на микробиологические процессы в ней, действие бактериальных препаратов на урожайность растений. В задачу с.-х. микробиологии входят изучение микроорганизмов, вызывающих заболевания растений, и борьба с ними, разработка микробиологических способов борьбы с насекомыми — вредителями с.-х. растений и лесных пород, а также методов консервирования кормов, мочки льна, предохранения урожая от порчи, вызываемой микроорганизмами.
В задачу технической, или промышленной, микробиологии входит изучение и осуществление микробиологических процессов, применяемых для получения дрожжей, кормового белка, липидов, бактериальных удобрений, а также получение путём микробиологического синтеза антибиотиков, витаминов, ферментов, аминокислот, нуклеотидов, органических кислот и т.п. Геологическая микробиология изучает роль микроорганизмов в круговороте веществ в природе, в образовании и разрушении залежей полезных ископаемых, предлагает методы получения (выщелачивания) из руд металлов (медь, германий, уран, олово) и др. ископаемых с помощью бактерий. Водная микробиология изучает количественный и качественный состав микрофлоры солёных и пресных вод и её роль в биохимических процессах, протекающих в водоёмах, осуществляет контроль за качеством питьевой воды, совершенствует микробиологические методы очистки сточных вод. В задачу медицинской микробиологии входит изучение микроорганизмов, вызывающих заболевания человека, и разработка эффективных методов борьбы с ними. Эти же вопросы в отношении сельскохозяйственных и др. животных решает ветеринарная микробиологии.
Практическое  значение микробиологии. Активно участвуя в круговороте веществ в природе, микроорганизмы играют важнейшую роль в плодородии почв, в продуктивности водоёмов, в образовании и разрушении залежей полезных ископаемых. Особенно важна способность микроорганизмов минерализовать органические остатки животных и растений. Всё возрастающее применение микроорганизмов в практике привело к возникновению микробиологической промышленности и к значительному расширению микробиологических исследований в различных отраслях промышленности и сельского хозяйства. Резко возросло применение микроорганизмов в сельском хозяйстве. Увеличилось производство бактериальных удобрений, в частности нитрагина, приготовляемого из культур клубеньковых бактерий, фиксирующих азот в условиях симбиоза с бобовыми растениями, и применяемого для заражения семян бобовых культур. Новое направление с.-х. микробиологии связано с микробиологическими методами борьбы с насекомыми и их личинками — вредителями с.-х. растений и лесов. Найдены бактерии и грибы, убивающие своими токсинами этих вредителей, освоено производство соответствующих препаратов. Высушенные клетки молочнокислых бактерий используют для лечения кишечных заболеваний человека и с.-х. животных. 

2. Краткая история  развития микробиологии
Возникновение и развитие микробиологии. За несколько тыс. лет до возникновения микробиологии как науки человек, не зная о существовании микроорганизмов, широко применял их для приготовления кумыса и др. кисломолочных продуктов, получения вина, пива, уксуса, при силосовании кормов, мочке льна. Впервые бактерии и дрожжи увидел А. Левенгук, рассматривавший с помощью изготовленных им микроскопов зубной налёт, растительные настои, пиво и т.д. Творцом микробиологии как науки был Л. Пастер, выяснивший роль микроорганизмов в брожениях (виноделие, пивоварение) и в возникновении болезней животных и человека. Исключительное значение для борьбы с заразными болезнями имел предложенный Пастером метод предохранительных прививок, основанный на введении в организм животного или человека ослабленных культур болезнетворных микроорганизмов. Задолго до открытия вирусов Пастер предложил прививки против вирусной болезни — бешенства. Он же доказал, что в современных земных условиях невозможно самопроизвольное зарождение жизни. Эти работы послужили научной основой стерилизации хирургических инструментов и перевязочных материалов, приготовления консервов, пастеризации пищевых продуктов и т.д. Идеи Пастера о роли микроорганизмов в круговороте веществ в природе были развиты основоположником общей М. в России С. Н. Виноградским, открывшим хемоавтотрофные микроорганизмы (усваивают углекислый газ атмосферы за счёт энергии окисления неорганических веществ; Хемосинтез), азотфиксирующие микроорганизмы и бактерий, разлагающих целлюлозу в аэробных условиях. Его ученик В. Л. Омелянский открыл анаэробных бактерий, сбраживающих, т. е. разлагающих в анаэробных условиях целлюлозу, и бактерий, образующих метан. Значительный вклад в развитие микробиологии был сделан голландской школой микробиологов, изучавших экологию, физиологию и биохимию разных групп микроорганизмов (М. Бейеринк, А. Клюйвер, К. ван Нил). В развитии медициской микробиологии важная роль принадлежит Р. Коху, предложившему плотные питательныесреды для выращивания микроорганизмов и открывшему возбудителей туберкулёза и холеры. Развитию медицинской микробиологии и иммунологии способствовали Э. Беринг (Германия), Э. Ру (Франция), С. Китазато (Япония), а в России — И. И. Мечников, Л. А. Тарасевич, Д. К. Заболотный, Н. Ф. Гамалея.
3. Значение работ  Пастера в развитии  микробиологии
Впервые бактерии и дрожжи увидел А. Левенгук, рассматривавший с помощью изготовленных им микроскопов зубной налёт, растительные настои, пиво и т.д. Творцом микробиологии как науки был Л. Пастер, выяснивший роль микроорганизмов в брожениях (виноделие, пивоварение) и в возникновении болезней животных и человека. Исключительное значение для борьбы с заразными болезнями имел предложенный Пастером метод предохранительных прививок, основанный на введении в организм животного или человека ослабленных культур болезнетворных микроорганизмов. Задолго до открытия вирусов Пастер предложил прививки против вирусной болезни — бешенства. Он же доказал, что в современных земных условиях невозможно самопроизвольное зарождение жизни. Эти работы послужили научной основой стерилизации хирургических инструментов и перевязочных материалов, приготовления консервов, пастеризации пищевых продуктов и т.д. Идеи Пастера о роли микроорганизмов в круговороте веществ в природе были развиты основоположником общей М. в России С. Н. Виноградским.
Пастер (Pasteur) Луи (1822—1895), французский микробиолог и химик, основоположник современной микробиологии и иммунологии. Первый директор научно-исследовательского микробиологического института (Пастеровского института), созданного в 1888 г. на средства, собранные по международной подписке. В этом институте наряду с другими иностранными учёными плодотворно работали и русские — И. И. Мечников, С. Н. Виноградский, Н. Ф. Гамалея, В. М. Хавкин, А. М. Безредка и др. Для исследований Пастера характерна органическая связь теории и практики. С 1857 изучал процессы брожения (молочнокислого, спиртового, уксусного, открытого им маслянокислого). Вопреки господствовавшей "химической" теории немецкого химика Ю. Либиха доказал, что брожение вызывается деятельностью различных видов микроорганизмов. Открыл при этом явление анаэробиоза (способность к жизни в отсутствии свободного O2) и существование облигатно (строго) анаэробных бактерий. Показал, что брожение служит источником энергии для вызывающих его микроорганизмов. Заложил научные основы виноделия, пивоварения и др. отраслей пищевой промышленности. Предложил метод предохранения вина от порчи (пастеризацию), примененный затем в производстве др. продуктов питания (пива, молока, фруктово-ягодных соков). Окончательно опроверг (путём эксперимента) представления о возможности самозарождения живых существ в современных условиях.  

Изучив природу  заболевания шелковичного червя (1870), Пастер установил заразность болезни, время её максимального проявления и рекомендовал меры борьбы с нею. Исследовал ряд др. заразных болезней животных и человека (сибирская язва, родильная горячка, бешенство, куриная холера, краснуха свиней и пр.), окончательно установив, что они вызываются специфическими возбудителями. На основе развитого им представления об искусственном иммунитете предложил метод предохранительных прививок, в частности вакцинацию против сибирской язвы (1881). В 1880 Пастер совместно с Э. Ру начал исследования бешенства. Первая предохранительная прививка от этой болезни была им сделана в 1885 г. 

4. Творческий вклад  русских ученых  в развитие микробиологии  (Виноградский, Ивановский, Омелянский, Воронин, Худяков, Кононов, Мишустин и др.)
Идеи Пастера  о роли микроорганизмов в круговороте  веществ в природе были развиты  основоположником общей микробиологии в России С. Н. Виноградским, открывшим хемоавтотрофные микроорганизмы (усваивают углекислый газ атмосферы за счёт энергии окисления неорганических веществ; Хемосинтез), азотфиксирующие микроорганизмы и бактерий, разлагающих целлюлозу в аэробных условиях. Виноградский Сергей Николаевич [.1856 —1953], русский микробиолог, член-корреспондент Петербургской АН. В 1891—1912 заведующий отделом общей микробиологии института экспериментальной медицины в Петербурге. Активно участвовал в организации Русского микробиологического общества (1903) и первые 2 года был его председателем. В 1922 уехал во Францию и до конца жизни руководил Агробактериологическим отделом Пастеровского института под Парижем. Виноградский впервые доказал, что существуют особые микроорганизмы (аноргоксиданты), получающие энергию в результате окисления неорганических веществ. Образующаяся при этом энергия используется на ассимиляцию углекислого газа или карбонатов; основанный на этом процесс усвоения углекислого газа получил название хемосинтеза. Открытие Виноградским хемосинтеза дало возможность русской микробиологии занять ведущее положение и оказало большое влияние на её развитие в других странах. Виноградский впервые (1893) выделил из почвы анаэробную спороносную бактерию Clostridium Pasteurianum, усваивающую молекулярный азот. Его ученик В. Л. Омелянский открыл анаэробные бактерии, сбраживающие, т. е. разлагающиев анаэробных условиях целлюлозу, и бактерии, образующие метан. Омелянский Василий Леонидович [1867— 1928], русский микробиолог, академик АН СССР (1923; член-корреспондент 1916). Ученик С. Н. Виноградского. Окончил Петербургский университет (1890). В 1893—1928 работал в Отделе общей микробиологии института экспериментальной медицины, с 1912 заведующий отделом. Основные работы по выяснению роли микроорганизмов в круговороте азота и углерода в природе. Предложил методы выделения и культивирования нитрифицирующих бактерий, изучал их морфологию и физиологию. Впервые выделил культуры анаэробных и спороносных бактерий, сбраживающих клетчатку с образованием органических кислот и водорода. Изучал аэробную азотфиксирующую бактерию (из рода азотобактер) и доказал существование бактерий, образующих метан из этилового спирта. Установил, что количество усвояемого азотфиксирующими микроорганизмами азота пропорционально усвоению органического вещества. Первый указал на возможность применения микроорганизмов как химических индикаторов. Редактор журнала "Архив биологических наук" (1906—28). Его книги "Основы микробиологии" (1909) и "Практическое руководство по микробиологии" (1922) способствовали формированию нескольких поколений советских микробиологов. Дмитрий Иосифович Ивановский (1864 — 1920) — русский физиолог растений и микробиолог, основоположник вирусологии. Окончил Петербургский университет в 1888 году и был оставлен при кафедре ботаники. Под руководством А. Н. Бекетова, А. С. Фаминцына и X. Я. Гоби изучал физиологию растений и микробиологию.
Обнаружил в клетках больных  растений кристаллические  включения («кристаллы Ивановского»), открыв, таким образом, особый мир возбудителей заболеваний небактериальной и непротозойной природы, названных впоследствии вирусами. Ивановский рассматривал их как мельчайшие живые организмы. Кроме того, Ивановский опубликовал работы об особенностях физиологических процессов в больных растениях, влиянии кислорода на спиртовое брожение у дрожжей, состоянии хлорофилла в растениях, его устойчивости к свету, значении каротина и ксантофилла, по почвенной микробиологии.
Воронин Михаил Степанович - ботаник (1838 - 1903). Многочисленные ученые работы Воронина касаются преимущественно класса грибов (микология) и тех низших организмов, что стоят на грани между животными и растениями. Он открыл, подробно изучил и описал множество в высокой степени важных не только в ботаническом, но и в общебиологическом смысле низших организмов. Грибная болезнь подсолнечника открыта и изучена им же; то же должно сказать о болезни капустных растений и пр. Все работы Воронина отличаются большой точностью. Его рисунки, без которых новейшая морфология не может обойтись, образцовы.
Худяков Николай Николаевич (1866—1927) — русский микробиолог. Труды посвящены вопросам анаэробиоза и почвенной микробиологии. В работе "К учению об анаэробиозе" (1896) установил возможность культивирования анаэробов в присутствии кислорода и высказал положение, что анаэробиоз у бактерий является приспособлением к условиям существования. В области почвенной микробиологии открыл явление адсорбции бактерий частицами почвы, что имеет большое значение для их активности в почвенных процессах. Автор первого на рус. языке курса "Сельскохозяйственная микробиология" (1926), имевшего большое значение для развития микробиология в СССР.
      Морфология и систематика бактерий
5. Внешняя форма  и размеры бактерий
Выделяют три  основные формы бактерий – шаровидные, палочковидные и извитые. 

Шаровидные  бактерии, или кокки
Форма шаровидная или овальная.
По характеру  расположения клеток в мазках выделяют: 
Микрококки – отдельно расположенные клетки.
Диплококки  – располагаются парами.
Стрептококки – клетки округлой или вытянутой формы, составляющие цепочку.
Сарцины – располагаются  в виде «пакетов» из 8 и более  кокков.
Стафилококки – кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.
Палочковидные бактерии
Форма палочковидная, концы клетки могут быть заостренными, закругленными, обрубленными, расщепленными, расширенными. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся, например у актиномицетов.
По характеру  расположения клеток в мазках выделяют: 
Монобактерии – расположены отдельными клетками.
Диплобактерии – расположены по две клетки.
Стрептобактерии – после деления образуют цепочки клеток.
Палочковидные бактерии могут образовывать споры: бациллы и клостридии. 

Извитые бактерии
 Форма   - изогнутое тело в один или несколько оборотов.
Вибрионы  – изогнутость тела не превышает одного оборота.
Спирохеты – изгибы тела в один или несколько оборотов. 

Размер бактерий
Микроорганизмы  измеряются в микрометрах и нанометрах.                      
Средние размеры  бактерий – 2 – 3 х 0,3 – 0,8 мкм.
Форма и размер - важный диагностический признак.
Способность бактерий изменять свою форму и величину называется полиморфизм 
 
 
 

Введение
В царство прокариот, или доядерных, объединяют самых  древних обитателей нашей планеты - бактерии, которых в обиходе часто называют микробами. Это очень древние организмы, появившиеся, по-видимому, около 3 млрд. лет назад. Эти организмы имеют клеточное строение, но их наследственный материал неотделен от плазматической оболочки, другими словами они лишены оформленного ядра. По размерам большинство из них значительно крупнее вирусов. Царство прокариот на основе важных особенностей жизнедеятельности, и прежде всего, обмена веществ ученые подразделяют на три подцарства: архибактерии, настоящие бактерии оксифото бактерии.
Изучение строения и жизнедеятельности микроорганизмов  занимается наука - микробиология.
Трудно найти ме5сто  на земном шаре, где не было бы мельчайших живых существ - бактерий. Их находили в струях гейзеров с температурой около 105, сверхсоленых озерах, например в знаменитом Мертвом море. Живые бактерии были обнаружены в вечной мерзлоте Арктики, где они пробыли 2-3 млн. лет. В океане, на глубине 11км; на высоте 41км в атмосфере; в недрах земной коры на глубине нескольких километров - везде находили бактерии.
Бактерии прекрасно  себя чувствуют в воде, охлаждающей  ядерные реакторы; остаются жизнеспособными, получив дозу радиации в 10 тыс. раз  превышающую смертельную для  человека. Они выдерживали двухнедельное  пребывание в глубоком вакууме; не погибали и в открытом космосе, помещенные туда на 18 часов, под смертоносным воздействием солнечной радиации.
Способы питания бактерий столь же разнообразны, как и условия  их жизни. Пожалуй, нет такого органического  вещества, которое не подошло бы в пищу тем или иным бактериям. Некоторые бактерии, как и зеленые растения, сами производят органические вещества с помощью солнечных лучей. Только кислород в отличие от растений они при этом процессе (фотосинтезе) не выделяют.
Среди бактерий есть паразиты, которые, поселяясь в чужих организмах, могут стать причиной болезни. Есть и бактерии-хищники, которые из множества своих тел «плетут» приспособления, чем-то напоминающие паутину, и ловят туда свою добычу (например, простейших).
Некоторые бактерии питаются такими «малосъедобными» веществами, как аммиак, соединения железа, серы, сурьмы.
Размножаются бактерии простым делением надвое. Каждые 20 минут  в благоприятных условиях количество некоторых бактерий может удваиваться. Если, например, в организм человека попала всего одна такая бактерия, то черех 12 часов их может стать уже несколько миллиардов.
Долгое время люди жили, так сказать, «бок о бок» с  бактериями, не подозревая об их существовании. Первым человеком, наблюдавшим бактерии в микроскоп, был Антонии Ван Левенгук, и было это в 1676 году (см. ст. «Антонии Ван Левенгук»).
А можно ли увидеть  бактерии невооруженным глазом? Есть среди бактерий и настоящие гиганты, например, пурпурная серобактерия - длиной до 1/20мм. Пару таких бактерий вполне можно увидеть невооруженным глазом.
Большинство бактерий в десятки раз меньше. Но даже самые мелкие бактерии, когда они  образуют большие скопления, увидеть  ничего не стоит. На месте одной-единственной бактерии, попавшей на поверхность  питательной среды, уже через несколько часов образуется видимая невооруженным глазом колония-бугорок. Взглянув на цвет и форму колонии, опытный специалист сразу определит, с бактериями какого вида он имеет дело.
Бывают желтые, красные, сини бактерии. Выдающийся английский биолог Александр Флеминг любил в свободное время делать цветные рисунки, причем в качестве красок он использовал … бактерии. Он наносил на контуры рисунка питательный бульон с соответствующими бактериями, помещал рисунок в тепло и получал цветное изображение.
1. Места обитания  бактерий
Бактерии обитают  в почве, воде, организме человека и животных. Разнообразные группы бактерий могут развиваться в  условиях, не доступных, для других организмов. Качественный и количественный состав бактерий, обитающих во внешней среде, зависит от многих условий: pH среды, температура, наличие питательных веществ, влажности, аэрации, присутствия других микроорганизмов. Чем больше в среде содержится разнообразных органических соединений, тем большее количество бактерий можно в ней обнаружить. В незагрязненных почвах и водах встречается сравнительно небольшое количество сапрофитных форм бактерий, микробактерии, кокковые формы. В воде встречаются различные спорообразующие и неспорообразующие бактерии и специфические водные бактерии - водные виброны, нитчатые бактерии и др. В иле, на дне водоемов, обитают различные анаэробные бактерии. Среди бактерий обитающих в воде и почве, имеются азотфиксирующие, нитрифицирующие, денитрифицирующие целлюлозу бактерии и др. В морях и океанах обитают бактерии, растущие при высоких концентрациях солей и повышенном давлении, встречаются светящиеся виды. В загрязненных водах и почве, кроме почвенных и водных сапрофитов, в большом количестве встречаются бактерии, обитающие в организме человека и животных - энтеробактерии, клостридии и др. Показателем фекального загрязнения обычно является наличие кишечной палочки. В связи с широким распространением бактерий и своеобразием метаболической активности многих их видов они имеют исключительно большое значение в круговороте веществ в природе (в круговороте азота участвуют многие виды бактерий - от видов расщепляющих белковые продукты растительного и животного происхождения, до видов образующих нитраты, которые устанавливаются высшими растениями).
2. Строение  бактерий
2 а) Размеры, форма  бактерий
Существуют три  основные формы бактерий - шаровидная, палочковидная и спиралевидная, большая группа нитчатых бактерий объединяет преимущественно водные бактерии и  не содержит патогенных видов.
Шаровидные бактерии - кокки, подразделяются в зависимости от положения клеток после деления на несколько групп: 1) диплококки (делятся в одной плоскости и располагаются парами); 2) стрептококки (делятся в одной плоскости, но при делении не отделяются друг от друга и образуют цепочки); 3) тетракокки (делятся в двух взаимно перпендикулярных плоскостях, образуя группы по четыре особи); 4) саруины (делятся в трех взаимно перпендикулярных плоскостях, образуя группы кубической формы); 5) стафилококки (делятся в нескольких плоскостях без определенной системы, образуя скопления, напоминающие виноградные грозди). Средний размер кокков 1,5-1мкм.
Палочковидные бактерии имеют строго цилиндрическую или  овоидную форму, концы палочек могут  быть ровными, закругленными, заостренными. Палочки могут располагаться попарно в виде цепочек, но большинство видов располагается без определенной системы. Длина палочек варьирует от 1 до 8 мкм.
Спиралевидные формы  бактерий подразделяют на виброны и  спириллы. Изогнутость тел вибронов не превышает одной четверти оборота спирали. Спириллы образуют изгибы из одного или нескольких оборотов.
Некоторые бактерии обладают подвижность, что отчетливо видно  при наблюдении методом висячей  капли или другими методами. Подвижные  бактерии активно передвигаются  с помощью особых органелл - жгутиков либо за счет скользящих движений.
Капсула имеется у  ряда бактерий и является из внешним структурным компонентом. У ряда бактерий аналогом капсуле имеется образование в виде тонкого слизистого слоя на поверхности клетки. У некоторых бактерий капсула формируется в зависимости от условий их существования. Одни бактерии образуют капсулы только в микроорганизме, другие как в организме, так и вне его, в частности на питательных средах, содержащих повышенные концентрации углеводов. Некоторые бактерии образуют капсулы независимо от условий существования. В состав капсулы большинства бактерий полимиризованные полисахариды, состоящие из пентоз и аминосахаров, урановые кислоты, полипептиды и белки. Капсула не является аморфным образованием, а определенным образом структурирована. У некоторых белков, например, пневмококков, определяет их вирулентность, а также некоторые антигенные свойства бактериальной клетки.
2 б) Строение бактериальной  клетки
Клеточная стенка бактерий определяет их форму и обеспечивает сохранение внутреннего содержимого  клетки. По особенностям химического  состава и структуры клеточной  стенки бактерии дифференцируют с помощью  окрашивания по грамму.
Строение у клеточной  стенки различно у грамположительных и грамотрицательных бактерий. Основным слоем клеточной стенки.
Цитоплазматическая  мембрана бактерии прилипает к внутренней поверхности клеточной стенки, отделяет ее от цитоплазмы и я является очень  важным в функциональном отношении компонентом клетки. В мембране локализованы окислительно-восстановительные ферменты, с системой мембран связаны такие важнейшие функции клетки, как деление клетки, биосинтез ряда компонентов, хемо и фотосинтез и др. Толщина мембраны у большинства клеток составляет 7-10нм. Электрономикороскопическим метолом обнаружено, что она состоит из трех слоев: двух электронно-плотных и промежуточнно-электронно-прозрачного. В состав мембраны входят белки, фосфолипиды, микропротеины, небольшое количество углеводов и некоторых других соединений. Многие белки мембраны клетки являются ферментами, участвующие в процессах дыхания, а также в биосинтезе компонентов клетчатой стенки и капсулы. В составе мембраны также определяются пермеазы, обеспечивающие перенос в клетку растворимых веществ. Мембрана служит астрономическим барьером, она обладает избирательной полупроницаемостью и ответственна за поступление внутрь клетки питательных веществ и отходов из нее продуктов обмена.
Помимо цитоплазматической мембраны, в клетке бактерии имеются система внутренних мембран, получивших название мезосом, которые, вероятно, являются производственными цитоплазматической мембраны; их строение варьирует у разных видов бактерий. Наиболее развиты мезосомы у грамположительных бактерий. Строение мезосом неоднотипно, их полиморфизм отмечаются даже у одного и того же вида бактерий. Внутренние мембран структуры могут быть представлены простыми инвагинациями цитоплазматической мембраны, образованиями в виде пузырьков или петель (чаще у грамотрицательных бактерий) в виде вакуялярных, ламелярных, тубулярных образований. Мезосомы чаще всего локализованы у клеточной перегородки, отмечается также их связь с нуклеоидом. Поскольку в мезосомах обнаружены дыхания и окислительного фосфорилирования, многие считают их аналогами митохондрий. Клеток высших. Предполагается, что мезосомы принимают участие в делении клетки, распределении дочерних хромосом в разделяющиеся клетки и спорообразовании. С мембранным аппаратом клетки связано также функции фиксации азота, хемо- и фотосинтеза. Следовательно можно полагать, что мембрана клетки играет своего рода координирующую роль в пространственной организации в пространственной координации ряда ферментных систем и органелл клетки.
Цитоплазма  и включения. Внутреннее содержание клетки состоит из цитоплазмы, представляющей собой сложную смесь различных органических соединений, находящихся в коллоидном состоянии. На ультратонких срезах цитоплазмы можно обнаружить большое количество зерен, значительная часть которых является рибосомами. В цитоплазме бактерии могут содержаться клеточные включения в виде гранул гиксогена, крахмала, жировых веществ. У ряда бактерий в цитоплазме находятся гранулы волютина, состоящих из неорганических полифосфатов, метафосфатов и соединений близких к нуклеиновым кислотам. Роль волютина до конца не ясна. Некоторые авторы на основании его исчезновения при голодании клеток рассматривают валютин как запасные питательные вещества. Валютин обладает средством к основным красителям, проявляя хромофильность метохрамазию, легко вживляется в клетках в виде крупных гранул, особенно при специальных метолах окраски.
Рибосомы бактерии являются местом синтеза белков в  клетке в процессе которого образуются структуры, состоящие из большого числа  рибосом, называемые полирибосомами или чаще пелисомами. В образовании полисом принимает участие м-РНК. По окончании синтеза данного белка полисомы вновь распадаются на одиночные рибосомы, или субъединицы. Рибосомы могут располагаться свободно в цитоплазме, но значительная их часть связана с мембранами клетки. На ультратонких срезах большинства бактерий рибосомы обнаруживаются в цитоплазме в виде гранул диаметром около 20 нм.
Наследственный материал. Бактерии обладают дискретной ядерной  структурой, в связи со своеобразием строения, получившей название нуклоида неклеоиды бактерии. Содержат основное количество ДНК клетки. Они окрашиваются методом Фейльгена. Хорошо видны при окраске по романовскому-
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.