На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Сумснсть лнйних алгебраїчних рвнянь. Найвищий порядок вдмнних вд нуля мнорв матриц. Детермнант квадратної матриц. Фундаментальна система розвязкв та загальний розв'язок системи лнйних однордних рвнянь. Приклади розвязання завдань.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 15.09.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


4
Міністерство освіти і науки України
Закарпатський державний університет
ІНСТИТУТ ІНФОРМАТИКИ
КАФЕДРА ФІЗИКО-МАТЕМАТИЧНИХ ДИСЦИПЛІН
Реєстраційний №____
Дата ______________
КУРСОВА РОБОТА
з вищої математики
Тема: Система лінійних однорідних алгебраїчних рівнянь. Фундаментальна сукупність розв'язків.

Рекомендовано до захисту
“__” ____________ 2006 р.
Робота захищена
“__” ____________ 2006 р.
з оцінкою
__________
Підписи членів комісії:
студента II курсу
денного відділення
П. І. Б.
Науковий керівник
проф. П. І. Б.
Ужгород
Зміст
I. Вступ ______________________________________________________3
II. Теоретичний виклад матеріалу _________________________________4
1. Сумісність лінійних алгебраїчних рівнянь _____________________4
2. Ранг матриці ______________________________________________5
3. Фундаментальна система розв'язків __________________________7
4. Приклади розв'язання завдань _______________________________9
III. Висновок __________________________________________________14
Використана література ______________________________________15
Вступ

Спочатку нам потрібно розглянути те, як виглядають системи лінійних однорідних алгебраїчних рівнянь, ознайомитися з тими компонентами, які входять у ці системи.
Отже, система m лінійних алгебраїчних рівнянь з n невідомими в загальному випадку має вигляд:
(2.1)
Тут n і m -- довільні натуральні числа, ніяк не пов'язані між собою; x1, x2,…,xn -- невідомі величини; (коефіцієнти системи), (вільні члени) -- довільні відомі числа.
В цій роботі нас цікавитиме система, у якої всі вільні члени дорівнюють нулю. Тобто однорідна система до системи (2.1), яка має такий вигляд:
(2.2)
Вона буде називається однорідною системою, відповідною до системи (2.1).
Система ж (2.1) називається неоднорідною, якщо (принаймні одне з чисел є відмінним від нуля).
Розв'язком системи (2.1) (системи (2.2)) називається така впорядкована система n чисел яка при підставленні в систему (2.1) (систему (2.2)) на місце невідомих відповідно, тобто замість , підставляємо , замість , підставляємо і т. д., перетворює всі рівняння системи (2.1) (системи (2.2)) в правильні рівності. Розв'язок записують у вигляді n- вимірного вектора .
Теоретичний виклад матеріалу
5. Сумісність лінійних алгебраїчних рівнянь.
Будь-яка система рівнянь називається сумісною, якщо вона має принаймні один розв'язок, і -- несумісною, якщо вона не має жодного розв'язку. При цьому сумісна система називається визначеною, якщо вона має тільки один розв'язок, і -- невизначеною, якщо вона має більше, ніж один розв'язок.
Дві системи рівнянь називаються еквівалентними, якщо обидві вони несумісні, або якщо обидві вони сумісні та мають одні й ті ж розв'язки. Системи лінійних алгебраїчних рівнянь є еквівалентними, якщо вони одержуються одна з однієї шляхом застосування скінченної послідовності таких перетворень.
* переставляння місцями двох рівнянь системи (елементарне перетворення першого роду),
* додавання до якогось рівняння системи іншого рівняння цієї системи, помноженого на деяке число (елементарне перетворення другого роду).
Кожній системі лінійних алгебраїчних рівнянь (2 1) чи (2.2) відповідає деяка матриця
(2.3)
її називають матрицею цієї системи. Для системи (2.1) можна виписати матрицю
(2.4)
Її називають розширеною матрицею системи (2.1).
З іншого боку, кожну - матрицю можна розуміти як матрицю деякої системи m лінійних алгебраїчних рівнянь з n невідомими, а - матрицю як розширену матрицю деякої неоднорідної системи m лінійних алгебраїчних рівнянь з n невідомими. Останнє зауваження означає, що система m лінійних алгебраїчних рівнянь з n невідомими з точністю до позначень невідомих, задається своєю розширеною - матрицею.
Неважко помітити, що, проводячи елементарні перетворення першого і другого роду в системі лінійних алгебраїчних рівнянь, ми маємо справу лише з коефіцієнтами при невідомих. Через це значно простіше виконувати елементарні перетворення, оперуючи не з самою системою, а лише з її розширеною матрицею. Таким чином, елементарні перетворення першого і другого роду над системами лінійних алгебраїчних рівнянь з невідомими здійснюються, як перетворення відповідних їм матриць. При цьому переставлянню місцями двох рівнянь системи відповідає переставляння місцями двох рядків матриці системи (елементарне перетворення першого роду), а додаванню до якогось рівняння системи іншого рівняння цієї системи, помноженого на деяке число, відповідає додавання до якогось рядка матриці системи іншого її рядка, помноженого на деяке число (елементарне перетворення другого роду).
6. Ранг матриці.
Нехай - система таких n-вимірних векторів, що:
,
тобто -- система векторів-рядків матриці А. Цю систему можна впорядковувати різними способами.
Нехай -- певним чином впорядкована система векторів-рядків матриці А. Вилучаючи з цієї системи ті вектори-рядки матриці А, які лінійно виражаються через попередні, одержуємо лінійно незалежну підсистему векторів-рядків матриці А.
Зрозуміло, що впорядковуючи різними способами систему векторів-рядків матриці А, ми будемо одержувати, загалом, різні лінійно незалежні підсистеми лінійно незалежних векторів-рядків матриці А. Спільним для всіх таких підсистем є кількість векторів-рядків матриці А, що входять до них. Власне, це число називається рангом системи векторів-рядків матриці А.
Означення. Рангом матриці А називається ранг системи її векторів-рядків.
Нехай А -- довільна прямокутна матриця, k -- таке натуральне число, що Зафіксуємо в цій матриці k рядків і k стовпців. Не змінюючи взаємного розташування елементів матриці А, розташованих на перетині зафіксованих рядків і стовпців, складемо з них матрицю k-го порядку. Детермінант цієї матриці називається мінором k-го порядку матриці А.
Кажуть, що мінор r+1-го порядку матриці А обводить мінор 1-го порядку, якщо він містить його в собі повністю.
Теорема. Найвищий порядок r відмінних від нуля мінорів матриці А дорівнює рангу цієї матриці.
Наслідок 1. Ранг системи векторів-рядків матриці А дорівнює рангові системи векторів-стовпців цієї матриці.
Наслідок 2. Детермінант квадратної матриці дорівнює нулю тоді і тільки тоді, коли якийсь її рядок є лінійною комбінацією інших її рядків.
Для знаходження рангу матриці А розмірності використовують такий алгоритм:
1) Якщо всі елементи матриці А дорівнюють нулю, тобто, то її ранг R(A) дорівнює нулю.
2) Якщо хоча би один елемент матриці А відмінний від нуля, то При цьому, якщо всі мінори другого порядку
матриці дорівнюють нулю, то .
3) Якщо хоча би один мінор другого порядку матриці А відмінний від нуля, то При цьому, якщо всі мінори третього порядку
матриці А, які обводять відмінний від нуля мінор другого порядку матриці A, дорівнюють нулю, то .
4) Якщо хоча би один мінор третього порядку матриці А відмінний від нуля, то При цьому, якщо всі мінори четвертого порядку матриці А, які обводять відмінний від нуля мінор третього порядку матриці А, дорівнюють нулю, то ... і т.д.
Означення. Нехай r -- ранг матриці . Будь-який відмінний від нуля мінор 1-го порядку матриці називають її базовим мінором.
7. Фундаментальна система розв'язків.
З теореми Кронекера-Капеллі випливає, що будь-яка система (2.2) лінійних однорідних рівнянь є сумісною. Вона має очевидний (тривіальний) розв'язок: (його записують у вигляді (0.....0)). Якщо ранг матриці системи (2.2) дорівнює кількості невідомих, тобто , то така система має тільки нульовий розв'язок. Якщо ж , де , то в системі є n-r вільних невідомих, які можна дібрати так, щоб система (2.2) мала ще й ненульові розв'язки. Зазначимо, що система n лінійних однорідних рівнянь з n невідомими тоді і тільки тоді має розв'язки, відмінних від нульового, коли детермінант цієї системи дорівнює нулю.
Нехай вектори та є розв'язками с системи (2.2). Тоді при будь-якому дійсному k вектор також є розв'язком системи (2.2). Крім того, при будь-яких дійсних k та l вектор також є розв'язком системи (2.2). Іншими словами: будь-яка лінійна комбінація розв'язків системи (2.2) лінійних однорідних алгебраїчних рівнянь є розв'язком цієї ж системи Сукупність усіх можливих розв'язків системи (2.2) називають простором розв'язків цієї системи.
Систему (2.2) розв'язують за тим же алгоритмом, що й систему (2.1). При цьому, очевидно і ми фіксуємо деякий базовий мінор матриці А системи (2.2). Потім виконуємо такі дії:
1. Відкидаємо всі ті рівняння системи (2.2), коефіцієнти при невідомих у яких не складають рядок вибраного базового мінора матриці А, тобто залишаємо тільки рівнянь системи (2.2).
2. Всі невідомі в залишених нами рівняннях, коефіцієнти при яких не входять в базовий мінор, переносимо в праву частину рівняння (ці невідомі називають вільними).
3. Надаючи вільним невідомим довільних значень, знаходимо значення інших r невідомих (ці невідомі називаються головними).
Одержавши всі можливі розв'язки системи (2.2), ми можемо вибрати з них лінійно незалежні розв'язки. Для цього потрібно вільним невідомим (а їх є n-r, де ), наприклад, надавати такі сукупності значень (i=1,...), щоб ці n-r-вимірні вектори виявилися лінійно незалежними. Таких векторів можна вибрати n-r. Для кожного з цих лінійно незалежних n-r-вимірних векторів, компонентами яких є значення вільних невідомих, знаходимо відповідні значення головних невідомих , де (i=1,...,n-r). Тоді n-вимірні вектори (i=1,...,n-r) є лінійно незалежними розв'язками системи (2.2). Таку систему и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.