На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Музыкальный салон

Информация:

Тип работы: курсовая работа. Добавлен: 02.09.2012. Сдан: 2011. Страниц: 10. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Аннотация
   Данный  документ является пояснительной запиской к курсовому проекту по дисциплине «Технология разработки программных продуктов» на тему «Музыкальный салон». Необходимо разработать программный продукт, котрый сможет автоматизировать работу персонала музыкального магазина, музыкального салона.
   Основными разделами пояснительной записки являются:
   - Расчётная часть, содержащая постановку  задачи, требования к программному  средству, требования к составу  и параметрам технических средств,  информационное обеспечение задачи;
   - Описательная часть, содержащая, описание решаемой задачи, описание программного средства, контрольный пример, руководство пользователя;
   - Графическая часть, содержащая  алгоритм решения задачи.
   Пояснительная записка состоит из __ страниц, __ иллюстраций, __ таблиц и _ приложений.
   Разработка  задачи проходила в Красноярском техникуме информатики и вычислительной техники.
   Разработка  программного средства осуществлялась на компьютере: процессор Intel Core 2 Duo 6300, частота 1,86 Ггц, оперативная память 2 Гб, под управлением операционной системы Microsoft Windows Seven Ultimate, в среде разработки Borland C++ Builder 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Содержание
    Аннотация…………………………………………………………………………………...2
    Введение……………………………………………………………………………………..4
    1 Расчетная  часть…………………………………....………………………………………5
        1.1 Постановка задачи …………………………………………...…………..……….5
        1.2 Математическая модель…………………………………………………………  6
        1.3 Описание метода решения задачи……………………………………...………..6
        1.4 Информационное обеспечение ……..…………………………………...…........9 

    2 Описательная  часть……………………………………………………………….............10
        2.1 Алгоритм решения задачи……………………….……………..…………….…..10
        2.2 Описание программы……………………………………………..………….…..10
        2.3 Контрольный пример………………………………………………………...…..12
        2.4 Инструкция пользователя………………………………………………….….…13
    Заключение……………………………………………………………………..……….…..14
    Список  сокращений…………………………………………………………………..…….15
    Список  литературы…………………………………………………………….......……….16
    Приложения…………………………………………………………………….………...…17 

 

    Введение
   Теория  игр – раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта. На практике часто появляется необходимость согласования действий фирм, объединений, министерств и других участников проектов в случаях, когда их интересы не совпадают. В таких ситуациях теория игр позволяет найти лучшее решение для поведения участников, обязанных согласовывать действия при столкновении интересов.
   Целью курсового проектирования является:
   - научится создавать качественные  и надежные программные средства, допускающие последующие сопровождения,  а также получение рабочих  навыков при создании программных  средств;
   - разработать техническую документацию  к разработанному программному  средству.
   Для достижения этих целей в данном проекте  выполняется разработка программного средства.
   В конечном итоге результатом курсового  проектирования по дисциплине «Математические  методы» должно быть полноценное программное средство решающее поставленую задачу и написанная к нему техническая документация.
   В процессе курсового проектирования необходимо систематизировать, закрепить  и расширить знания, полученные при  изучении дисциплины «Математические  методы». Углубить теоретические знания в соответствии с заданой темой. Научиться применять теоретические  знания при решении поставленных вопросов, использовать справочную, нормативную  и правовую документацию. Курсовой проект по разработке и сопровождению прораммного средства по дисциплине «Математические методы» является промежуточной стадией обучения в Красноярском техникуме информатики и вычислительной техники и освоения специальности «Программное обеспечение вычислительной техники и автоматизированных систем».
   Внедрение программного средства упростит решения задач определения оптимальной стретегии игрока и цены игры.
   Задача  проекта состоит в автоматизации  вычислений связанных с определением оптимальной стратегии игрока и цены игры. 
 
 
 
 
 
 

   
    Расчетная часть
      Постановка задачи
       В процессе разработки курсового проекта  необходимо разработать программное  средство «Решение матричных игр», позволяющее определить оптимальную стратегию игрока и цену игры при игре в матричные игры.
       Теория игр изучает различные взаимодействия, после которых игроки получают различные выигрыши. Основная задача теории игр - понять, какими стратегиями будут пользоваться игроки.
       Нормальная форма игры. Игра - это совокупность следующих множеств: множества игроков, множества стратегий этих игроков и множества выплат этим игрокам. В теории игр игру можно представить в виде матрицы размерностью m x n, называемой платежной матрицей. Платежная матрицаэто запись в матричной форме денежных платежей/полезностей. В клетках матрицы указываются платежи, или стоимостные оценки ожидаемых исходов при принятии данной стратегии и возникновении определенного состояния внешней среды. Платежи могут иметь смысл положительных результатов или доходов, а также отрицательных результатов или расходов. В пером случае задача решается на максимизацию дохода, во втором — на минимизацию расходов. 

       A=   (1)
       Aij – платёжная матрица размерностью m x n.
       Представим  себе игру в нормальной форме. Для  каждого набора стратегий всех игроков, кроме выбранного, есть стратегия (иногда их несколько), которая приносит наибольшую выплату выбранному игроку она называется - наилучший ответ. Равновесие Нэша - это такой набор стратегий игроков, для которого каждая выбранная стратегия является наилучшей на стратегии остальных игроков. Если все играют стратегии из равновесия Нэша, то никому из игроков в одиночку отклоняться невыгодно.
       ? = max min aij – максимум из минимумов по строкам (максимин);
       ? = min max aij – минимум из максимумов по столбцам (минимакс). 
     
     

       Математическая модель
      Если  ? ? ?, тогда такая игра имеет  седловую точку. Если платёжная матрица  не имеет седловой точки, то поиск  решения игры приводит к применению сложной стратегии состоящей  в случайном применении двух и  более стратегий с разными  частотами. Такая сложная стратегия  называется смешанной. В игре матрица, которой имеет размерность m x n Стратегии первого игрока задаються набором вероятностей, с которыми он применяет свои чистые стратегии.
               (2)
      Аналогично  вводяться вероятности второго  игрока.
               (3) 

      Выигрыш второго игрока при использовании  смешанных стратегий определяют как математическое ожидание выигрыша.
                (4)
      Если  платежная матрица не содержит седловой точки, то задача определения смешанной  стратегии тем сложнее чем  больше размерность матрицыэ Поэтому  матрицы большой размерности  целесообразно упростить, путем  вычеркивания дублирующихся и заведомо не выгодных стратегий. 

      Описание  метода решения задачи

  Найти гарантированный выигрыш, определяемый нижней ценой игры ? = max(ai), которая указывает на максимальную чистую стратегию. Верхняя цена игры ? = min(bj).  
Если отсутствует седловая точка, так как a<>b, тогда цена игры находится в пределах ? <= y <= ?. Найти решение игры в смешанных стратегиях.  
Математические модели пары двойственных задач линейного программирования можно записать так:  
найти минимум функции f(x) при ограничениях:  
a11u1+a21u2+…+am1u>= 1  
a12u1+a22u2+…+a2mu>= 1  
… 
an1u1+an2u2+…+anmu>= 1  
?x2+?x>= 1  
F(x) = u1+u2+…+u= min  
найти максимум функции F(y) при ограничениях:  
a11z1-a12z2+…+a1nz<= 1  
a21z1-a22z2+…+a2nz<= 1  
am1z1-am2z2+…+amnz<= 1   
Ф(y) = z1+z2+…+z= max  
Решить эти системы симплексным методом.  
Решить прямую задачу линейного программирования  симплексным методом, с использованием симплексной таблицы.  
Определить минимальное значение целевой функции F(X) = u+ u+ … + uпри следующих условиях-ограничений.  
a11u1+a21u2+…+am1u>= 1  
a12u1+a22u2+…+am2u>= 1 
a13u1+a23u2+…+am3u>= 1  
Для построения первого опорного плана систему неравенств привести к системе уравнений путем введения дополнительных переменных (переход к канонической форме).  
a11x+ a21x2 + a31x+ a41x+ a51x5-a61x6 + a71x+ a81x= 1  
a12x+ a22x2 + a32x+ a42x+ a52x5-a62x6 + a72x+ a82x= 1  
a13x+ a23x2 + a33x+ a43x+ a53x5-a63x6 + a73x+ a83x= 1  
Если задача решается на минимум или элементы единичной матрицы отрицательны, свести задачу к нахождению максимума. Для этого умножить все строки на (-1) и искать первоначальный опорный план.  
-a11x- a21x2 - a31x+ a41x+ a51x5-a61x6 + a71x+ a81x= 1  
-a12x- a22x2 - a32x+ a42x+ a52x5-a62x6 + a72x+ a82x= 1  
-a13x- a23x2 - a33x+ a43x+ a53x5-a63x6 + a73x+ a83x= 1  

     Таблица 1  - матрица коэффициентов A = a(ij) 

-a11 -a21 a31 a41 a51 a61 a71 a81
-a12 -a22 -a32 a42 a52 a62 a72 a82
-a13 -a23 -a33 a43 a53 a63 a73 a83
 
  Базисные  переменные - это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.  
Решить систему уравнений относительно базисных переменных: x6, x7, x8.  
Полагая, что свободные переменные равны 0, получаем первый опорный план.

  Если  в  столбце свободных членов есть отрицательные элементы. Использовать двойственный симплекс-метод. Выбрать из них наибольший по модулю, а в его строке – любой отрицательный. Взяв этот элемент в качестве разрешающего пересчитать таблицу.
  Выполнить необходимое количество итераций до тех пор пока все элементы в базисном столбце не будут положительными. После перейти к основному алгоритму симплекс-метода.  
  Если в индексной строке находятся отрицательные коэффициенты, то текущий опорный план неоптимален.  
В качестве ведущего выбрать столбец, соответствующий переменной, у которой наибольший коэффициент по модулю.  
После этого вычислить значения Dпо строкам как частное от деления:  
          
и из них выбрать наименьшее. 
Разрешающий элемент находится на пересечении ведущего столбца и ведущей строки.  
Сформировать следующую часть симплексной таблицы.  
Вместо переменной x в план 1 войдет переменная x.  
Строка, соответствующая переменной x6  в плане 1, получена в результате деления всех элементов строки xплана 0 на разрешающий элемент.  
В остальных клетках столбца xплана 1 записать нули.  
Таким образом, в новом плане 1 заполнены строка x6  и столбец x.  
Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.  
Для этого выбрать из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент.  
НЭ = СЭ - (А*В)/РЭ  
СТЭ - элемент старого плана, РЭ - разрешающий элемент, А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.  
Интерации заканчиваются тогда, когда индексная строка не содержит отрицательных элементов следовательно найден оптимальный план.

  Составить двойственную задачу к прямой задаче.   
a11z+ a12z+ a13z3?1  
a21z+ a22z+ a23z3?1  
a31z+ a32z+ a33z3?1  
z+ z+ z=> max  
z? 0  
z? 0  
z? 0

  Используя последнюю итерацию прямой задачи находим, оптимальный план двойственной задачи.  
Из теоремы двойственности следует, что Y = C*A-1.  
Составить матрицу A из компонентов векторов, входящих в оптимальный базис.

  Цена игры равна g = 1/F(x), а вероятности применения стратегий игроков: pi = g*xi; qi = g*yi.  

  1.4 Информационное обеспечение задачи 

  1.4.1 Входные данные
  Входная информация представлена в виде основных данных пользователя, которыми являются:
  - платёжная матрица размерности  m x n, строки определяют стратегии первого игрока, столбцы определяют стратегии второго. На пересечении двух стратегий находяться выигрыши, которые получат игроки. 

    1.4.2 Выходные данные
    Выходная  информация представляет собой отчет  следуещего вида;
    - исходная матрица;
    - оптимальная стратегия первого игрока;
    - оптимальная стратегия второго  игрока;
    - пара двойственных задач, соответствующих этой игре;
    - цена игры.
 

      2. Описательная часть 

      2.1 Алгоритм решения задачи 

  Алгоритм  решения задачи представлен в  Приложении А. 

          2.2 Описание программы 

  Было  разработано программное средство на тему: «Теория игр. Решение матричных  игр в смешанных стратегиях».
  Для нормального функционирования программы  необходимы следующие технические  средства:
  - процессор  совместимый Intel Pentium III  или выше;
  - оперативная память 256 Мб;
  - жесткий диск с объемом  10 Гб, 3 Гб  свободного дискового пространства;
  - манипулятор типа мышь;
  - клавиатура;
  - операционная система Windows 2000 или более поздней;
  - видео карта, обеспечивающая разрешение  не ниже 1024х768.
  Дополнительные  требования к составу и параметрам технических средств не предъявляются, все устройства должны находится  в своей базовой настройке. Программа разрабатывалась в среде Delphi 7 под управлением операционной системы Windows Seven Ultimate. 

  Выходные и входные данные описаны в пункте 1.4. 

  Для начала проверки осуществим запуск программного средства. Появиться окно программного продукта представленное на рисунке 1.
      
       Рисунок 1 – Окно программного  продукта 

  Далее в программном продукте вводим размерность  матрицы. После этого вводим элементы платежной матрицы, как представленно на рисунке 2.
  
  Рисунок 2 – Заполненная платежная матрица 

  Осуществим  решение данных оптимальной стратегии игрока и цены игры. Для этого выполним нажатие на кнопку «Ок» или пункт главного меню «Решить», представленное на рисунке 3. 

      

    Рисунок 3 - Решение задачи и определение оптимальной стратегии игрока и цены игры 
 
 
 
 

 

     2.3 Контрольный пример 

        Для проверки правильности работы программы  сравним результаты, рассчитанные вручную  с результатами, полученными с  использованием программного средства.
        Дана  платежная матрица А. Определить оптимальную стратегию первого, второго игорока и цену данной игры. 

    
    A=  
 
 

    Определить максимин и минимакс: 

    ? = max(3 2 4 1)=4
    ? = min(7 6 8 6 9)=6 

    Определить цену игры:
    ?=5,20 

    Привести результаты работы программного средства. 

    Решение в чистых стратегиях 

    max(3 2 4 1)=4
    min(7 6 8 6 9)=6 

    Решения в чистых стратегиях не существует 
 

    Пара  двойственных задач, соответствующих  этой игре, имеют вид:
    Задача 1
    f=u1 + u2 + u3 + u4 -> min
    7*u1 + 5*u2 + 4*u3 + 3*u4 >= 1
    6*u1 + 6*u2 + 6*u3 + 2*u4 >= 1
    5*u1 + 3*u2 + 8*u3 + 3*u4 >= 1
    4*u1 + 2*u2 + 6*u3 + 1*u4 >= 1
    3*u1 + 3*u2 + 9*u3 + 2*u4 >= 1 

    Задача 2
    F=z1 + z2 + z3 + z4 + z5 -> max
    7*z1 + 6*z2 + 5*z3 + 4*z4 + 3*z5 <= 1
    5*z1 + 6*z2 + 3*z3 + 2*z4 + 3*z5 <= 1
    4*z1 + 6*z2 + 8*z3 + 6*z4 + 9*z5 <= 1
    3*z1 + 2*z2 + 3*z3 + 1*z4 + 2*z5 <= 1 
 

    Определить цену игры:
    v=5.20 

    В результате сравнения данных, полученных с помощью программы и рассчитанные вручную сделан вывод, что программа  работает правильно. 

         2.4 Инструкция пользователя  

  В ходе выполнения курсового проекта  был реализован пример, решение матричной игры. 

  Основные  действия, которые пользователь должен выполнять при работе:
  Запуск  программы осуществляется запуском .exe файла с названием TheoryGame.
  Системные требования:
    - процессор  совместимый Intel Pentium III  или выше;
    - оперативная память 256 Мб;
    - жесткий диск с объемом  10 Гб, 3 Гб  свободного дискового пространства;
    - CD-ROM;
    - манипулятор типа мышь;
    - клавиатура;
    - видео карта, обеспечивающая разрешение  не ниже 1024х768.
    Платформа: - операционная система Windows 2000 или более поздней.
    Таблица 2 – Основные действия, которые пользователь может выполнить при работе с  программой.
Операция Действия пользователя Ответ программы
Запуск  программы Открыть исполняемый файл TheoryGame.exe На экране появляется окно прораммы
Определение оптимальных стратегий игроков  и цены игры Заполнить все  текстовые компоненты, нажать кнопку «Решить», посмотреть результаты Вывод результатов  в поле редактирования
Очистка текстовых полей Нажать кнопку «Очистить» Очистка текстовых  полей
Выход из прогрыммы Для выхода нужно  закрыть окно программы, либо нажать кнопку «Выход» Программа завершает  свою работу
 
 
 
 

Заключение
    В данном курсовом проекте рассмотрен процесс создания программного средства под названием «Оптимальная стратегия» и предоставление уже готового продукта пользователю. Данная программа упростит работу пользователей, позволит значительно снизить затраты труда на выполняемые операции, свести к минимуму возможности возникновения каких-либо неточностей, иногда возникающих при работе человека из-за невнимательности.
    Данная  программа предназначена для  любого пользователя. Для успешного  использования данного программного средства необходимы начальные знания ПК. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Список  сокращений
    1. ПК – персональный компьютер
    2. Ггц – гигагерц
    3. Гб – гигабайт
    4. Мб – мегабайт 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

     Список используемой литературы 

    
    М. С. Красс, Б. П. Чупрынов, «Математика для экономистов», СПб, Питер, 2005 год;
    Т. Л. Партык, И. И. Попов, «Математические методы», Москва, ФОРУМ. ИНФРА – М, 2005 год.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Приложение  А 


 
 
 
 

 


 

 


 

 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Рисунок 4 – Блок схема алгоритма решения  задачи
 





 


 



 
 

 



 


 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Рисунок 4 – Блок схема алгоритма решения  задачи  


 

 
 





 






 




 






и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.